

Test-Driven Data Analysis (Python TDDA library)

Version 2.0.02. (Installation)

The TDDA module helps with the testing of data and of code that
manipulates data. It serves as a concrete implementation of the ideas
discussed on the test-driven data analysis [http://www.tdda.info/pages/table-of-contents.html#table-of-contents]
blog. When installed, the module offers a suite of command-line tools
that can be used with data from any source, not just Python. It also
provideds enhanced test methods for Python code, and the new
Gentest functionality enables automatic generation of
test programs for arbitrary code (not just Python code). There is
also a full Python API for all functionality.

Test-driven data analysis is closely related to
reproducible research [https://en.wikipedia.org/wiki/Reproducibility],
but with more of a focus on automated
testing. It is best seen as overlapping and partly complementary
to reproducible research.

The major components of the TDDA module are:

[image: Machines illustrating the constraint discovering functionality, which takes data in and produces constraints as output; rexpy, which takes strings in and produces regular expressions as output, and gentest, which takes code in and produces tests as output.]

	Automatic Constraint Generation and Verification: The package includes command-line tools and API calls for

	discovery of constraints that are satisified by (example)
data — tdda discover;

	verification that a dataset satisfies a set of constraints.
The constraints can have been generated automatically,
constructed manually, or (most commonly) consist of
generated constraints that have been
subsequently refined by hand — tdda verify;

	detection of records, fields and values that fail to satisify
constraints (anomaly detection) — tdda detect.

	Reference Testing: The TDDA library offers extensions to
unittest and pytest for managing the testing of data analysis
pipelines, where the results are typically much larger, and more
complex, and more variable than for many other sorts of programs.

	Automatic Generation of Regular Expressions from Examples: There
is command-line tool (and API) for automatically inferring
regular expressions [https://en.wikipedia.org/wiki/Regular_expression]
from (structured) textual data — rexpy. This was developed
as part of constraint generation, but has broader utility.

	Automatic Test Generation (Experimental): From version 2.0 on,
the TDDA library also includes experimental features for
automatically generating tests for almost any command-line based
program or script. The code to be tested can take the form of a
shell script or any other command-line code, and can be written
in any language or mix of languages.

Contents

	Overview

	Installation
	Upgrading

	Source installation

	Checking the installation

	Optional Installations for using Databases, Feather Files, Pandas

	Automatic Constraint Generation, Data Verification & Anomaly Detection
	The tdda Command-line Tool

	tdda discover

	tdda verify

	tdda detect

	Constraints for CSV Files and Pandas DataFrames

	Constraints for Databases

	TDDA JSON file format

	Constraints Examples

	Rexpy
	The rexpy command

	Rexpy Examples

	Gentest: Automatic Test Generation for Unix & Linux Commands/Scripts
	The Big Idea

	Running Gentest

	Gentest Examples

	Example 1: Hey, cats! (not using Wizard)

	The Generated Test Code

	Test Failures

	Updating the reference outputs if the new behaviour is correct

	The Gentest Wizard

	Example 2: Using the Gentest Wizard

	R Examples for Gentest

	Gentest Parameters and Options

	Reference Tests
	Prerequisites

	Simple Examples

	Methods and Functions

	unittest Framework Support

	pytest Framework Support

	Reference Test Examples

	TDDA’s Constraints API
	tdda.constraints

	Extension Framework

	Constraints API

	TDDA’s API for Rexpy
	tdda.rexpy

	Microsoft Windows Configuration

	Tests

	Examples

	Recent Changes
	This Version

	Older Versions

Resources

	Talks & Filmed Tutorials about TDDA etc (Nick Radcliffe) [https://stochasticsolutions.com/talks/]

	TDDA Library (PyCon DE, Eberhard Hansis, 2019) [https://www.youtube.com/watch?v=ADEBxja8vw4]

	Tutorial Video Screencasts on Exercises [http://www.tdda.info/exercises]

	Tutorials YouTube Channel [https://www.youtube.com/channel/UCAwK_xYqaEL3lEOz4YUZmZw]

	Paper: Automatic Constraint Generation and Verification [http://www.tdda.info/pdf/tdda-constraint-generation-and-verification.pdf]

	1-page summary of ideas [http://stochasticsolutions.com/pdf/TDDA-One-Pager.pdf]

	Quick-reference Guide / Cheat Sheet [http://www.tdda.info/pdf/tdda-quickref.pdf]

	TDDA Blog [http://www.tdda.info/pages/table-of-contents.html#table-of-contents]

	Twitter tdda0 [https://twitter.com/tdda0]

	Slack [https://tdda.slack.com] (mail/DM on twitter for invitation)

	Source Repository (Github) [https://github.com/tdda/tdda]

Indexes and Search

	Index

	Module Index

	Search Page

Overview

The tdda package provides Python support for
test-driven data analysis
(see 1-page summary [http://stochasticsolutions.com/pdf/TDDA-One-Pager.pdf]
with references, or the blog [http://www.tdda.info/pages/table-of-contents.html#table-of-contents])

	The tdda.referencetest library is used to support the creation of
reference tests, based on either unittest or pytest.

	The tdda.constraints library is used to discover constraints
from a (Pandas) DataFrame, write them out as JSON, and to verify that
datasets meet the constraints in the constraints file. It also supports
tables in a variety of relation databases.
There is also a command-line utility for discovering and verifying
constraints, and detecting failing records.

	The tdda.rexpy library is a tool for automatically
inferring regular expressions from a column in a Pandas DataFrame
or from a (Python) list of examples.
There is also a command-line utility for Rexpy.

Although the library is provided as a Python package, and can be called
through its Python API, it also provides command-line tools.

Installation

If you don’t need source, the simplest way to install the TDDA library is
to do a normal pip install:

pip install tdda

If you have multiple Python installations and want to ensure you use the
right one, use:

python -m pip install tdda

replacing python with whatever you need to use to run your target
version of Python.

If you want it installed for all users and don’t have write access to
your Python’s site packages, you should change the permissions
so that you can write it, or log in as a user who does have permission,
or add sudo before the pip or python command.

Upgrading

Add --upgrade or -U after install in the commands above
to upgrade an existing installation.
This is a general pattern for pip:

pip install -U tdda

or:

python -m pip install -U tdda

Source installation

The tdda [https://github.com/tdda/tdda] project is hosted on Github at
github.com/tdda/tdda [https://github.com/tdda/tdda].

If you want to do a source installation, that’s probably all you need to know,
but:

git clone git@github.com:tdda/tdda.git

or:

git clone https://github.com/tdda/tdda.git

is the command to get it.

Then:

python setup.py install

should install it.

Checking the installation

If all has gone well, you should be able to type:

tdda

and it will show you some help.

You should also be able to use:

>>> import tdda
>>> tdda.__version__

from your Python successfully.

Finally, you should be able to run the tests with no failures, like this
for example:

cd tdda/tdda
python testtdda.py
Skipping Postgres tests (no driver library)
Skipping MySQL tests (no driver library)
..ssssssssss..sssss..............................
--
Ran 213 tests in 18.421s

OK (skipped=15)

Some tests will be skipped (s) if you don’t have various libraries
or haven’t (yet) told TDDA about any databases you might want to use.

Optional Installations for using Databases, Feather Files, Pandas

Extra libraries are required to access some of the constraint-generation
and verification functionality, depending on the data sources that you
wish to use.

	pandas (required for CSV files and feather files)

	feather-format (required for feather files)

	pmmif (makes feather file reading and writing more robust)

	pygresql (required for PostgreSQL database tables)

	MySQL-python or mysqlclient or mysql-connector-python (required for MySQL database tables)

	pymongo (required for MongoDB document collections)

These can be installed with (some/all of):

pip install pandas
pip install feather-format
pip install pmmif
pip install pygresql
pip install pymongo

and, for MySQL, one of:

pip install MySQL-python
pip install mysqlclient
pip install mysql-connector-python

To install feather-format on Windows, you will need to install
cython as a prerequisite, which might also require you to install
the Microsoft Visual C++ compiler for Python.

Automatic Constraint Generation, Data Verification & Anomaly Detection

The TDDA library provides support for constraint generation,
verification and anomaly detection for datasets, including .csv files
and Pandas DataFrames.

The module includes:

	The tdda Command-line Tool for discovering constraints in data,
and for verifying data against those constraints,
using the TDDA JSON file format (.tdda files).

	A Python constraints library containing classes that
implement constraint discovery and validation, for use from within
other Python programs.

	Python implementations of constraint discovery, verification and
and anomaly detection for a number of data sources:

	.csv files

	Pandas and R DataFrames saved as .feather files

	PostgreSQL database tables (postgres:)

	MySQL database tables (mysql:)

	SQLite database tables (sqlite:)

	MongoDB document collections (mongodb:)

Note

To use databases, pandas, .feather files etc. you may need
to install extra optional packages.
See Optional Installations for using Databases, Feather Files, Pandas.

The tdda Command-line Tool

The tdda command-line utility provides a tool for discovering constraints
in data and saving them as a .tdda file in the
TDDA JSON file format, and also for verifying data using
against constraints stored in a .tdda file.

It also provides some other functionality to help with using the tool.
The following command forms are supported:

	tdda discover —perform constraint discovery.

	tdda verify — verify data against constraints.

	tdda detect — detect anomalies in data by checking constraints.

	tdda examples — generate example data and code.

	tdda help — show help on how to use the tool.

	tdda test — run the TDDA library’s internal tests.

See Examples for more detail on the code and data
examples that are included as part of the tdda package.

See Tests for more detail on the tdda package’s own tests,
used to test that the package is installed and configured correctly.

tdda discover

The tdda discover command can generate constraints for data,
and save the generated constraints as a
TDDA JSON file format file (.tdda).

Usage:

tdda discover [FLAGS] input [constraints.tdda]

	input is one of:

	a .csv file

	a -, meaning that a .csv file should be read from standard input

	a feather file containing a DataFrame, with extension
.feather

	a database table

	constraints.tdda, if provided, specifies the name of a file to
which the generated constraints will be written.

If no constraints output file is provided, or if - is used,
the constraints are written to standard output (stdout).

Optional flags are:

	-r or --rex, to include regular expression generation

	-R or --norex, to exclude regular expression generation

See Constraints for CSV Files and Pandas DataFrames for details of how a .csv file is read.

See Constraints for Databases for details of how database tables are accessed.

tdda verify

The tdda verify command is used to validate data from various sources,
against constraints from a
TDDA JSON file format constraints file.

Usage:

tdda verify [FLAGS] input [constraints.tdda]

	input is one of:

	a .csv file

	a -, meaning it will read a .csv file from standard input

	a feather file containing a DataFrame, with extension
.feather

	a database table

	constraints.tdda, if provided, is a JSON .tdda file
constaining constraints.

If no constraints file is provided and the input is a .csv or
a .feather file,
a constraints file with the same path as the input file, but with a .tdda
extension, will be used.

For database tables, the constraints file parameter is mandatory.

Optional flags are:

	
	-a, --all

	Report all fields, even if there are no failures

	
	-f, --fields

	Report only fields with failures

	
	-7, --ascii

	Report in ASCII form, without using special characters.

	
	--epsilon E

	Use this value of epsilon for fuzziness in comparing numeric values.

	
	--type_checking strict|sloppy

	By default, type checking is sloppy, meaning that when checking type
constraints, all numeric types are considered to be equivalent. With
strict typing, int is considered different from real.

See Constraints for CSV Files and Pandas DataFrames for details of how a .csv file is read.

See Constraints for Databases for details of how database tables are accessed.

tdda detect

The tdda detect command is used to detect anomalies on data,
by checking against constraints from a
TDDA JSON file format constraints file.

Usage:

tdda detect [FLAGS] input constraints.tdda output

	input is one of:

	a .csv file name

	a -, meaning it will read a .csv file from standard input

	a feather file containing a DataFrame, with extension
.feather

	a database table

	constraints.tdda, is a JSON .tdda file constaining constraints.

	output is one of:

	a .csv file to be created containing failing records

	a -, meaning it will write the .csv file containing
failing records to standard output

	a feather file with extension .feather, to be created
containing a DataFrame of failing records

If no constraints file is provided and the input is a .csv or feather file,
a constraints file with the same path as the input file, but with a .tdda
extension, will be used.

Optional flags are:

	
	-a, --all

	Report all fields, even if there are no failures

	
	-f, --fields

	Report only fields with failures

	
	-7, --ascii

	Report in ASCII form, without using special characters.

	
	--epsilon E

	Use this value of epsilon for fuzziness in comparing numeric values.

	
	--type_checking strict|sloppy

	By default, type-checking is sloppy, meaning that when checking type
constraints, all numeric types are considered to be equivalent. With
strict typing, int is considered different from real.

	
	--write-all

	Include passing records in the output.

	
	--per-constraint

	Write one column per failing constraint, as well as the n_failures
total column for each row.

	
	--output-fields FIELD1 FIELD2 ...

	Specify original columns to write out. If used with no field names,
all original columns will be included.

	
	--index

	Include a row-number index in the output file. The row number is
automatically included if no output fields are specified. Rows are
usually numbered from 1, unless the (feather) input file already has
an index.

If no records fail any of the constraints, then no output file is
created (and if the output file already exists, it is deleted).

See Constraints for CSV Files and Pandas DataFrames for details of how a .csv file is read.

See Constraints for Databases for details of how database tables are accessed.

Constraints for CSV Files and Pandas DataFrames

If a .csv file is used with the tdda command-line tool, it will be
processed by the standard Pandas .csv file reader with
the following settings:

	index_col is None

	infer_datetime_format is True

	quotechar is "

	quoting is csv.QUOTE_MINIMAL

	escapechar is \ (backslash)

	na_values are the empty string, "NaN", and "NULL"

	keep_default_na is False

Constraints for Databases

When a database table is used with the any tdda command-line tool,
the table name (including an optional schema) can be preceded by
DBTYPE chosen from postgres, mysql, sqlite or
mongodb:

DBTYPE:[schema.]tablename

The following example will use the file .tdda_db_conn_postgres from your
home directory (see Database Connection Files), providing all of the default
parameters for the database connection.

tdda discover postgres:mytable
tdda discover postgres:myschema.mytable

For MongoDB, document collections are used instead
of database tables, and a document can be referred to at any level in
the collection structure. Only scalar properties are used for constraint
discovery and verification (and any deeper nested structure is ignored).
For example:

tdda discover mongodb:mydocument
tdda discover mongodb:subcollection.mysubdocument

Parameters can also be provided using the following flags (which override
the values in the .tdda_db_conn_DBTYPE file, if provided):

	
	--conn FILE

	Database connection file (see Database Connection Files)

	
	--dbtype DBTYPE

	Type of database

	
	--db DATABASE

	Name of database to connect to

	
	--host HOSTNAME

	Name of server to connect to

	
	--port PORTNUMBER

	IP port number to connect to

	
	--user USERNAME

	Username to connect as

	
	--password PASSWORD

	Password to authenticate with

If --conn is provided, then none of the other options are required, and
the database connection details are read from the specified file.

If the database type is specified (with the --dbtype option, or by
prefixing the table name, such as postgres:mytable), then a default
connection file .tdda_db_conn_DBTYPE (in your home directory) is used,
if present (where DBTYPE is the name of the kind of database server).

To use constraints for databases, you must have an appropriate
DB-API (PEP-0249) driver library installed within your Python environment.

These are:

	For PostgreSQL: pygresql or PyGreSQL

	For MySQL: MySQL-python, mysqlclient or mysql-connector-python

	For SQLite: sqlite3

	For MongoDB: pymongo

Database Connection Files

To use a database source, you can either specify the database type
using the --dbtype DBTYPE option, or you can prefix the table name
with an appropriate DBTYPE: (one of the supported kinds of database
server, such as postgres).

You can provide default values for all of the other database options in
a database connection file .tdda_db_conn_DBTYPE, in your home directory.

Any database-related options passed in on the command line will
override the default settings from the connection file.

A tdda_db_conn_DBTYPE file is a JSON file of the form:

{
 "dbtype": DBTYPE,
 "db": DATABASE,
 "host": HOSTNAME,
 "port": PORTNUMBER,
 "user": USERNAME,
 "password": PASSWORD,
 "schema": SCHEMA,
}

Some additional notes:

	All the entries are optional.

	If a password is provided, then care should be taken to ensure that the
file has appropriate filesystem permissions so that it cannot be read by
other users.

	If a schema is provided, then it will be used as the default schema,
when constraints are discovered or verified on a table name with no
schema specified.

	For MySQL (in a .tdda_db_conn_mysql file), the schema
parameter must be specified, as there is no built-in default for it to
use.

	For Microsoft Windows, the connector file should have the
same name as for Unix, beginning with a dot, even though this form of
filename is not otherwise commonly used on Windows.

TDDA JSON file format

A .tdda file is a JSON file containing a single JSON object of the form:

{
 "fields": {
 field-name: field-constraints,
 ...
 }
}

Each field-constraints item is a JSON object containing a property for
each included constraint:

{
 "type": one of int, real, bool, string or date
 "min": minimum allowed value,
 "max": maximum allowed value,
 "min_length": minimum allowed string length (for string fields),
 "max_length": maximum allowed string length (for string fields),
 "max_nulls": maximum number of null values allowed,
 "sign": one of positive, negative, non-positive, non-negative,
 "no_duplicates": true if the field values must be unique,
 "values": list of distinct allowed values,
 "rex": list of regular expressions, to cover all cases
}

Constraints Examples

The tdda.constraints module includes a set of examples.

To copy these constraints examples, run the command:

tdda examples constraints [directory]

If directory is not supplied, constraints_examples will be used.

Alternatively, you can copy all examples using the following command:

tdda examples

which will create a number of separate subdirectories.

Rexpy

The rexpy command

rexpy [FLAGS] [inputfile [outputfile]]

If inputfile is provided, it should contain one string per line;
otherwise lines will be read from standard input.

If outputfile is provided, regular expressions found will be written
to that (one per line); otherwise they will be printed.

Optional FLAGS may be used to modify Rexpy’s behaviour:

	-h, --header

	Discard first line, as a header.

	-?, --help

	Print this usage information and exit (without error)

	-g, --group

	Generate capture groups for each variable fragment
of each regular expression generated, i.e. surround
variable components with parentheses, e.g.

^[A-Z]+\-[0-9]+$

becomes

^([A-Z]+)\-([0-9]+)$

	-q, --quote

	Display the resulting regular expressions as
double-quoted, escaped strings, in a form broadly
suitable for use in Unix shells, JSON, and string
literals in many programming languages. e.g.

^[A-Z]+\-[0-9]+$

becomes

"^[A-Z]+\\-[0-9]+$"

	--portable

	Product maximally portable regular expressions
(e.g. [0-9] rather than \d). (This is the default.)

	--grep

	Same as --portable

	--java

	Produce Java-style regular expressions (e.g. \p{Digit})

	--posix

	Produce POSIX-compilant regular expressions
(e.g. [[:digit:]] rather than \d).

	--perl

	Produce Perl-style regular expressions (e.g. \d)

	-u , --underscore, -_

	Allow underscore to be treated as a letter.
Mostly useful for matching identifiers.

	-d, --dot, -., --period

	Allow dot to be treated as a letter.
Mostly useful for matching identifiers.

	-m, --minus, --hyphen, --dash

	Allow minus to be treated as a letter.
Mostly useful for matching identifiers.

	-v, --version

	Print the version number.

	-V, --verbose

	Set verbosity level to 1

	-VV, --Verbose

	Set verbosity level to 2

	-vlf, --variable

	Use variable length fragments

	-flf, --fixed

	Use fixed length fragments

Rexpy Examples

TDDA rexpy is supplied with a set of examples.

To copy the rexpy examples, run the command:

tdda examples rexpy [directory]

If directory is not supplied, rexpy_examples will be used.

Alternatively, you can copy all examples using the following command:

tdda examples

which will create a number of separate subdirectories.

Gentest: Automatic Test Generation for Unix & Linux Commands/Scripts

Gentest automatically generates tests for shell
scripts and command-line programs on Unix and Linux.

It can currently test

	files created

	screen output (to stdout and stderr)

	exit codes and error states

and has some ability to handle run-to-run variation that occur
in correctly running code.

The general model is shown below:

[image: gentest takes some_script.sh as input and generates test_somescript_sh.py and ref_somescript_sh as outputs]
As shown, in simple cases, Gentest simply takes a command as input,
and generates a Python test program, together with any required
reference outputs in a subdirectory. The test script runs
the command and executes a number of tests to see if it behaves
as expected.

The Big Idea

The key assumption Gentest makes is that the code you give it is
running correctly when you run the tdda gentest command. The
tests Gentest creates don’t really test that code is correct;
merely that it its behaviour is consistent and doesn’t generate
error states. This is what we mean when we talk about reference
tests: test that processes with known, believed correct
reference outputs continue to operate as expected.

“Consistent” doesn’t need to mean identical every time.
Gentest runs code more than once, and tries to cater for
variations it sees and things that look like non-portable
aspects of your environment.

Running Gentest

The simplest way to run Gentest is to use the wizard, which will prompt
you with a series of questions:

$ tdda gentest

In simple cases, where you want the default behaviour (see below)
you can add the command that you want to test to skip the wizard:

$ tdda gentest 'command to test'

The command can be anything that you can run from the command line—a
simple Unix command, a shell script, or a compiled or interpreted
program, optionally with parameters.

The full syntax (which is mostly used programmatically, or by copying
what Gentest writes into its output files, when you want to regenerate
a set of tests after changing the code) is:

$ tdda gentest [FLAGS] 'command to test' [test_output.py [FILES]]

See Gentest Parameters and Options for full details of available flags and parameters.

Gentest Examples

TDDA gentest is supplied with a set of examples.

To copy the gentest examples, run the command:

tdda examples gentest [directory]

If directory is not supplied, gentest_examples will be used.

Alternatively, you can copy all examples using the following command:

tdda examples

which will create a number of separate subdirectories.

The first few examples are rather trivial. Go straight to the worked
Python Examples or R Examples if you want more excitement and realism
straight away.

Example 1: Hey, cats! (not using Wizard)

We start with a purely illustrative example—using
Gentest to create a test that checks the behaviour of
the cat command on a known file:

$ echo 'Hey, cats!' > hey ①
$ tdda gentest 'cat hey' ②

Running command 'cat hey' to generate output (run 1 of 2). ③
Saved (non-empty) output to stdout to /home/tdda/tmp/ref/cat_hey/STDOUT.
Saved (empty) output to stderr to /home/tdda/tmp/ref/cat_hey/STDERR.

Running command 'cat hey' to generate output (run 2 of 2).
Saved (non-empty) output to stdout to /home/tdda/tmp/ref/cat_hey/2/STDOUT.
Saved (empty) output to stderr to /home/tdda/tmp/ref/cat_hey/2/STDERR.

Test script written as /home/tdda/tmp/test_cat_hey.py
Command execution took: 0.012s

SUMMARY: ④

Directory to run in: /home/tdda/tmp
Shell command: cat hey
Test script generated: test_cat_hey.py
Reference files (none):
Check stdout: yes (was 'Hey, cats!\n')
Check stderr: yes (was empty)
Expected exit code: 0
Clobbering permitted: yes
Number of times script ran: 2

$ python test_cat_hey.py ⑤
....
--
Ran 4 tests in 0.008s

OK

① For this illustration, we first create a file called hey containing
the text Hey, cats!, which we will feed to the cat command (to
display it in the terminal).

② We run tdda gentest 'cat hey' to generate the test. It is a good
idea to enclose the command in single quotes, and this may be
necessary if it includes spaces or special characters. If
the command itself uses single quotes, normal shell rules apply and
they will need to be escaped. (It’s generally easier to use the wizard
in such cases.)

③ Gentest then runs the command we specified a number of times—2 by default.

④ Gentest finishes by displaying a summary of what it did.
It names the script automatically, based on
a sanitized version of the command—in this case test_hey_cats.py

⑤ Finally, we run the test script generated, and in this case
it reports that it has run four tests, all of which passed.
In this case, the four tests (which you can obviously see by
looking in the test script) are:

	check that the output written to the screen Hey, cats!
(on stdout) was as expected.

	check that there was no output written to stderr, since
no output was written to stderr when it ran the code
to generate the tests

	check that the exit code returned by the command was 0.
(On Unix and Linux systems, programs return a numeric code,
which should be zero if the program completes normally,
and a (small) non-zero number if it finishes abnormally,
with different codes indicating different issues.

	check that the program did not crash.

The Generated Test Code

We’ll walk through the core of the generated test code briefly.
Obviously, you can look at all of it: it’s right there in
test_hey_cats.py, but won’t bother with the boilerplate.

The core of the generated code is a test class (subclassing
tdda.ReferenceTestCase, which inherits from unittest.TestCase),
with a setUpClass class method that runs the command
and assigns class attributes for the output to stdout,
the error output to stderr, any exeception (exc)
that occurred, the exit code (exit_code) from the command
and the wall-clock time it took to run (duration, in seconds):

@classmethod
def setUpClass(cls):

 (cls.output,
 cls.error,
 cls.exception,
 cls.exit_code,
 cls.duration) = exec_command(cls.command, cls.cwd)

When the code doesn’t generate any files that need to be checked,
there’s then a single test for each of the four checks mentioned
above:

	First, there was no exception (in which case, self.exc will be None):

def test_no_exception(self):
 self.assertIsNone(self.exception)

	Then comes the check that the exit code was zero:

def test_exit_code(self):
 self.assertEqual(self.exit_code, 0)

	After this, there’s a test to check the normal output to sys.stdout.
The reference output has been saved to ./ref/cat_hey/STDOUT,
and self.refdir is set (further up in the script) to
./ref/cat_hey/ (conceptually):

def test_stdout(self):
 self.assertStringCorrect(self.output,
 os.path.join(self.refdir, 'STDOUT'))

The assertStringCorrect method, with no extra parameters,
compares the first value (the output, stored in self.output, as a
literal string, in this case) with the reference output, in the file.
But the method does more than that, including accepting extra parameters
to control the comparison, capturing output to file when the strings
don’t match, and re-writing the reference if so instructed.

	The last is the counterpart the stdout check, this time
instead checking stderr. Since there was no output to
stderr, in this case it’s actually just checking that there
was no output:

def test_stderr(self):
 self.assertStringCorrect(self.error,
 os.path.join(self.refdir, 'STDERR'))

Test Failures

Let’s look at what happens in a few error and test cases.
Using the same test code as before, let’s change the output
by changing what’s in the file hey:

$ echo 'Ho, cats!' > hey
$ python test_cat_hey.py
... 1 line is different, starting at line 1
Expected file /home/tdda/tmp/ref/cat_hey/STDOUT
Compare raw with:
 diff /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-raw-STDOUT /home/tdda/tmp/ref/cat_hey/STDOUT

Compare post-processed with:
 diff /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-STDOUT /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/expected-STDOUT

F
==
FAIL: test_stdout (__main__.TestCAT_)
--
Traceback (most recent call last):
 File "test_cat_hey.py", line 48, in test_stdout
 os.path.join(self.refdir, 'STDOUT'))
AssertionError: False is not true : 1 line is different, starting at line 1
Expected file /home/tdda/tmp/ref/cat_hey/STDOUT ①
Compare raw with: ②
 diff /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-raw-STDOUT /home/tdda/tmp/ref/cat_hey/STDOUT

Compare post-processed with: ③
 diff /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-STDOUT /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/expected-STDOUT

--
Ran 4 tests in 0.010s

FAILED (failures=1)

The output is a bit verbose, and when there are failures, these tend to
be shown twice (as here), but the main things to note are:

① The failure that has occured is with STDOUT, i.e. the messages
sent to the screen on the normal output stream (as opposed to the
error stream).

② Gentest tells you how to examine the differences between the actual
output and the output it expected with using a diff command. The actual
output has been saved to a file called actual-raw-STDOUT in a
temporary directory, and Gentest stored the output it expected for
STDOUT in ref/cat_hey/STDOUT. If you have a visual diff tool
(such as opendiff on the Mac, or meld on Linux, or vdiff
on Unix), you can probably just replace diff with your preferred tool.

If we run the command suggested, we get:

$ diff /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-raw-STDOUT /home/tdda/tmp/ref/cat_hey/STDOUT
1c1
< Ho, cats!

> Hey, cats!

Here we can see that the change from Hey to Ho has been picked up.
(You may see a claim that one of the files doesn’t end with a newline;
that’s a bug.)

③ Gentest also suggests a command for comparing post-processed versions of
output. This isn’t relevant in this case, but in cases later (when Gentest
decides that the output is not completely fixed) where this is useful.

Updating the reference outputs if the new behaviour is correct

If the new behaviour is in fact correct, there are several ways to
update the test with the new results.

	You can copy the first diff command (the one for the raw
output) and replace the diff with cp. This overwrites
the reference output and should all the failing test to pass:

$ cp /var/folders/tx/z752bv1x6qx8swpncq8qg5mm0000gp/T/actual-raw-STDOUT /home/tdda/tmp/ref/cat_hey/STDOUT
$ python test_cat_hey.py

--
Ran 4 tests in 0.010s

OK

	Alternatively, you can re-run the test script, adding --write-all
This will rewrite all reference outputs with whatever the script
produces. If you only want to update a single test, you can use the
@tag decorator to tag it and the use the -1 flag:

$ python test_cat_hey.py --write-all
..Written /home/tdda/tmp/ref/cat_hey/STDERR
.Written /home/tdda/tmp/ref/cat_hey/STDOUT
.
--
Ran 4 tests in 0.010s

OK
$ python test_cat_hey.py
....
--
Ran 4 tests in 0.008s

OK

	Finally, of course, you can simply rerun tdda gentest to completely
regenerate the entire test script and reference outputs.
Test files generated by gentest contain the command needed to regenerate
the the same way as before, near the top, even if the Wizard was
originally used. For example, the top of test_cat_hey.py is:

 """
 test_cat_hey.py: Automatically generated test code from tdda gentest.

 Generation command:

 tdda gentest 'cat hey' 'test_cat_hey.py' '.'
 """

In this case, this is the same we used, except that this is explicitly
specifying the name of the test script and that `Gentest` should look
to see whether any files are created in the current directory `.`
when it runs.

The Gentest Wizard

To run Gentest’s wizard (recommended in most cases), use:

tdda gentest

You will then be prompted with a series of questions/directions.
Most questions have suggested default answers, which you can
accept by just hitting the RETURN (enter) key. The questions will be:

	Enter shell command to be tested:

Here is when you give the full command you want tested,
e.g. sh example2.sh. You don’t need to quote the command,
even if it has spaces or special characters, which makes it
easier if you need quotes in the command or its parameters.

	Enter name for test script [test_sh_example2_sh]:

The default name is a sanitized version of your command, and
may become long if your command is complicated, so you might
wish to choose a shorter name.
Normally, you should start the name with test and give it
a .py extension.
Note: any existing file of the chosen name will be silently
overwritten unless you use the --noclobber flag.

	Check all files written under $(pwd)?: [y]:

Ordinarily, Gentest will watch to see whether your code
writes any files in the current directory, or its subdirectories,
and will use those as reference outputs, i.e. treat them
as files to be checked. Answer n) if you don’t
want this to be done.

	Check all files written under (gentest's) $TMPDIR?: [y]:

Also by default, gentest will look for any files written to
$TMPDIR, if that shell variable is set, or the to the
system’s temporary directory (usually, /tmp), if it is not.
Say n if you don’t want gentest to look at
files written to the temporary directory.

	Enter other files/directories to be checked, one per line, then a blank line:

You can specify other locations gentest should watch for files.
It’s best not to make this a very high level directory (especially
not /, as this will be very slow), but if there’s a location
your code is writing to, tell Gentest if you would like those files
checked.

	Check stdout?: [y]:

Gentest normally captures output to the screen, and checks that.
On Unix and Linux systems, this output is split between ordinary
output, which goes to stdout (file descriptor 1)
and stderr (file descriptor 2),
which is normally reserved for errors and warnings.
If you don’t want Gentest to check stdout, say n.

	Check stderr?: [y]:

Again, if you don’t want the standard error stream to be checked,
say no to this question.

	Exit code should be zero?: [y]:

All programs on Unix and Linux return an exit status, which is
a numeric value between 0 and 255.
Well-behaved programs return a 0 exit status to indicate
success or normal functioning, and non-zero exit statuses
to indicate different error conditions.
Gentest normally includes a test of the exit status that fails
if it is non-zero, and declines to generate tests if a non-zero
exit status is returned when it is running the command for
initial test generation.
You can override this behaviour by sauing n to to this question.

	Clobber (overwrite) previous outputs (if they exists)?: [y]:
By default, Gentest will overwrite any previous test script (of the
same name) and corresponding reference outputs when run.
If you say n, it will fail if the output test script or reference
directory already exist.

	Number of times to run script?: [2]:

As noted above, Gentest does not require that commands behave
identically every time. While its capabilities are necessarily
limited (as a minimally artificially intelligent™ system)
Gentest attempts to recognize a limited range of correct
behaviours by virtue of:

	running tests multiple times

	noting various aspects of the environment that may affect results.

By default, Gentest runs scripts just twice, to gauge run-to-run
variation, but results can sometimes be made more robust by increasing
this number.

Example 2: Using the Gentest Wizard

For this example, we’ll use Gentest with the following shell script.
example2.sh, in the current directory:

echo "Hey, cats!"
echo
echo "This is gentest, running on `hostname`"
echo
echo "I have to say, the weather was better in Münich!"
echo
echo "Today, `date` it's proper dreich here."
echo
echo "Let's have a file as well." > FILE1
echo "Have a number: $RANDOM" >> FILE1
echo "Random number written to $PWD/FILE1"

You can get this script by typing tdda examples. This will
generate a few directories in the directory you are in, including
gentest which contains this script. Either change to that
directory or copy example2.sh up a level.

We’ll use the Gentest wizard, accepting the defaults suggestions after specifying sh example2.sh as the command to be tested, except that we’ll
ask gentest to run the script 10 times (for reasons we’ll see below):

$ tdda gentest
Enter shell command to be tested: sh example2.sh
Enter name for test script [test_sh_example2_sh]:
Check all files written under $(pwd)?: [y]:
Check all files written under (gentest's) $TMPDIR?: [y]:
Enter other files/directories to be checked, one per line, then a blank line:

Check stdout?: [y]:
Check stderr?: [y]:
Exit code should be zero?: [y]:
Clobber (overwrite) previous outputs (if they exist)?: [y]:
Number of times to run script?: [2]: 10

Running command 'sh example2.sh' to generate output (run 1 of 10).
Saved (non-empty) output to stdout to /home/tdda/tmp/ref/sh_example2_sh/STDOUT.
Saved (empty) output to stderr to /home/tdda/tmp/ref/sh_example2_sh/STDERR.
Copied $(pwd)/FILE1 to $(pwd)/ref/sh_example2_sh/FILE1

Running command 'sh example2.sh' to generate output (run 2 of 10).
Saved (non-empty) output to stdout to /home/tdda/tmp/ref/sh_example2_sh/2/STDOUT.
Saved (empty) output to stderr to /home/tdda/tmp/ref/sh_example2_sh/2/STDERR.
Copied $(pwd)/FILE1 to $(pwd)/ref/sh_example2_sh/2/FILE1
 •
 •
 •
Running command 'sh example2.sh' to generate output (run 10 of 10).
Saved (non-empty) output to stdout to /home/tdda/tmp/ref/sh_example2_sh/STDOUT.
Saved (empty) output to stderr to /home/tdda/tmp/ref/sh_example2_sh/STDERR.

Copied $(pwd)/FILE1 to $(pwd)/ref/sh_example2_sh/10/FILE1

Test script written as /home/tdda/tmp/test_sh_example2_sh.py
Command execution took: 0.021s

SUMMARY:

Directory to run in: /home/tdda/tmp
Shell command: sh example2.sh
Test script generated: test_sh_example2_sh.py
Reference files:
 $(pwd)/FILE1
Check stdout: yes (was 9 lines)
Check stderr: yes (was empty)
Expected exit code: 0
Clobbering permitted: yes
Number of times script ran: 10

Notice that in this case:

① Gentest noticed that FILE1 was written, in the current working directory

② Gentest reports that nine lines were written to stdout when the code was run.

If we run the tests, we it’s most likely all five tests will pass,
(though probably necessarily always, for reasons we’ll discuss below):

$ python test_sh_example2_sh.py
.....
--
Ran 5 tests in 0.015s

OK

This time there is one more test than
Example 1, because the script wrote a file (FILE1),
for which there’s now a reference test.
Additionally, some of tests are more complex, to account for
run-to-run variation and dependencies.

If you look at the tests generated, three of them should identical to
the ones in Example 1 (test_no_exception,
test_exit_code and test_stderr).
The other two are more interesting.

Exclusions from Comparisons

When generating this documentation, the test for stdout came out
like this:

def test_stdout(self):
 substrings = [
 '/home/tdda/tmp',
 '11 Feb 2022 16:47:37',
 'tdda.local',
]
 self.assertStringCorrect(self.output,
 os.path.join(self.refdir, 'STDOUT'),
 ignore_substrings=substrings)

A list of substrings has been generated and these have been
passed into self.assertStringCorrect as ignore_substrings.
The effect of this is that any lines in the reference file
(ref/sh_example2_sh/STDOUT) containing any of these three strings
are not compared to the corresponding lines in the actual output
from the command.

	The first line is considered a poor choice for comparison, not
because different from run-to-run, but because the test was running
in the directory /home/tdda/tmp. While not certain, it seems
likely (to Gentest; or in less anthropomorphic terms,
to Gentest’s authors) that this line is in going to reflect the
directory in which the code was run, rather than being a hard-wired
output that is always /home/tdda/tmp. If you were using
Gentest for real, and saw that, and knew that in fact this is
a non-varying path, or that the code will only work in that particular
directory, it would be sensible to remove it from list of substrings
for exclusion.

	The second line, 11 Feb 2022 16:47:37 is ignored for on two
grounds. First, depending on how long Gentest took to run, it may
have been different for different runs among the 10.
But even if it wasn’t, this is a time within the window of times
when the test was run. Again, Gentest “assumes” that this is a current
timestamp, that will be different if the test is run at different times,
and indeed, that this time will probably never occur again.
Of course, this maybe wrong. It could be that the code contains
that hard-wired string, perhaps marking the solomn occasion on
which this every documentation was generated. And again, if you
inspect the code Gentest has generated and see an excluded
timestamp, or datestamp, that you think should be checked, you
should of course remove it to force the check.

	Finally, tdda.local is excluded from checking because the
machine the code was running on reports its hostname as
tdda.local, so again, Gentest “considers it likely”
that this string is host-dependent, rather than fixed.

Variable Text Comparisons

The last test is the one that might be thought to justify the
claim that Gentest is minimally artificially intelligent:

def test_FILE1(self):
 patterns = [
 r'^Have a number: [0-9]{4,5}$',
]
 self.assertFileCorrect(os.path.join(self.cwd, 'FILE1'),
 os.path.join(self.refdir, 'FILE1'),
 ignore_patterns=patterns)

You probably noticed that the script we were testing uses the
variable $RANDOM, which generates a pseudo-random number
in the range 0 to 32,767.
This generates two challenges, one of which Gentest rose to fully
in this case, and the other of which it only partially matched.

The first challenge is simply that output isn’t consistent.
Gentest noticed that, and characterized the line using
a regular expression that describes the line.
Unlike ignore_lines, which ignores whole lines
containing a given string, ignore_patterns is more precise:
it still drops the line from comparison, but only if both the
actual and the expected output lines match the regular expression.

Gentest uses Rexpy to generate the patterns for lines that
vary between runs.

In this case, the regular expression generated specified that the
pattern is four or 5 digits; this is pretty good, and most of the
numbers generated by $RANDOM are 4-or 5 digits———about 97%
of them in fact. But, if we run the test enough times, it will
fail, when a number under 1,000 is generated.
Similarly, when you run the code, you might not get [0-9]{4,5}
as the regular expression.
If you’re unlucky, you might get
[0-9]{5} (about 2.6% chance if run it 10 times,
but about a 48% chance if you use the default value of 2).
Conversely, if you’re very lucky, you might get [0-9]{1,5},
in which case it should always pass.

In any case, this illustrates that Gentest’s minimal artificial
intelligence only goes so far, and it’s a good idea to look at
the generated tests, and in this case, ideally adapt the
regular expression to [0-9]{1,5}.

If you write this to fail.sh (it’s also in the gentest examples
directory, if you run tdda examples):

#!/bin/bash
e=0
while [$e -eq 0]
do
 python test_sh_example2_sh.py
 e=$?
done

Eventually, this will produce something like:

==
FAIL: test_FILE1 (__main__.TestSH_EXAMPLE2)
--
Traceback (most recent call last):
 File "test_sh_example2_sh.py", line 64, in test_FILE1
 ignore_patterns=patterns)
AssertionError: False is not true : 1 line is different, starting at line 2
Compare with:
 diff /Users/njr/tmp/FILE1 /Users/njr/tmp/ref/sh_example2_sh/FILE1

Note exclusions:
 ignore_patterns:
 ^Have a number: [0-9]{4,5}$

--
Ran 5 tests in 0.017s

Notice how it’s highlighting the ignore_pattern. And here’s the diff
(for the run for the documentation):

$ diff /Users/njr/tmp/FILE1 /Users/njr/tmp/ref/sh_example2_sh/FILE1
2c2
< Have a number: 748

> Have a number: 29047

R Examples for Gentest

Code and Data

These scripts and datasets are closely based on examples provided by
the United States Environmental Protection Agency data at
https://www.epa.gov/caddis-vol4/download-r-scripts-and-sample-data.

In order to use them, you need a functioning installation of R
that can be invoked with the command Rscript.
R also needs to have the packages gam and bio.infer installed.
Those can be installed using the script 00-install-packages.R.

The scripts have been:

	renamed with numbers to indicate the order in which to run them

	modified to run the setup scripts 0-set-variables.R, required
for them to work

	Scripts 3 and 4 have been modifed to write the plots they produce
to PostScript files.

R Example 1: EPA Weighted Average Temperature Tolerances

tdda gentest 'Rscript 1-compute-weighted-average-tolerance-values.R' one

	This generates a test for running the script
1-compute-weighted-average-tolerance-values.R,
This script computes weighted average temperature tolerances
for three taxas and prints them to the screen.

	The one is a shorter name to use for the test script.
If we don’t specify it, a rather long filename, based on a
sanitized version of the command, will be used.
(We could have specified test_one.py too, but one is enough.)

	The script should generate four tests in test_one.py.

	Run the test by typing:

python test_one.py

This assumes that the command python runs a suitable Python 3
with access to the TDDA library. Replace python with python3
or whatever you need to run the tests under a target version on python

	If all went well, the output will be something like:

python test_one.py
....
--
Ran 4 tests in 0.237s

OK

	You should now have a directory ref/one, which will contain two files.
STDOUT should contain the output that R produces to the screen, which
includes a lot of startup chatter, the commands it ran, and the output.

R Example 2: A PDF Plot

The second script from the EPA generates a triptych of graphs.
The code on the website displays the graphs as a pop-up, but we’ve
modifed the code to write the graphs out as a PDF, which is rather
easier to test.

To run the second example, you can either follow a similar receipe to
the last, typing:

tdda gentest 'Rscript 2-compute-cumulative-percentiles.R' two

or use Genest’s wizard, by just typing:

tdda gentest

	At the first prompt put in the command to run the second script:

Enter name for test script [test_Rscript_2_compute_cumulative_percentiles_R]: two

	Accept the deafiults for everything else, just hitting the RETURN (enter)
key until it stops

Gentest should generate test_two.py, and a new subdirectory two of the
ref directory.

In this case, whether the tasts pass when you run them will depend on timing
and luck: You may get this:

$ python test_two.py
.....
--
Ran 5 tests in 0.258s

OK

or you may get something more like:

$ python test_two.py
..2 lines are different, starting at line 5
Compare with:
 diff /home/tdda/tmp/gentest_examples/r-examples/plots2.pdf /home/tdda/tmp/gentest_examples/r-examples/ref/two/plots2.pdf

F..
==
FAIL: test_plots2_pdf (__main__.Test)
--
Traceback (most recent call last):
 File "/home/tdda/tmp/gentest_examples/r-examples/test_two.py", line 52, in test_plots2_pdf
 self.assertFileCorrect(os.path.join(self.cwd, 'plots2.pdf'),
AssertionError: False is not true : 2 lines are different, starting at line 5
Compare with:
 diff /home/tdda/tmp/gentest_examples/r-examples/plots2.pdf /home/tdda/tmp/gentest_examples/r-examples/ref/two/plots2.pdf

--
Ran 5 tests in 0.288s

FAILED (failures=1)

The reason it may pass or fail is that R’s PDF writer write a timestamp
into the PDF file, accurate to the second. If the timing is such that the
timestamp the same, to the second, for each of the two trial runs
Gentest does by default, it will see two identical PDF files and assume
they’re always the same. But by the time you run the test, the time
will almost certainly be later, and a slightly different PDF will be generated.

In the in which the trial PDFs were identical, the test code Gentest
will generate for write the PDF file will look something like this:

def test_plots2_pdf(self):
 self.assertFileCorrect(os.path.join(self.cwd, 'plots2.pdf'),
 os.path.join(self.refdir, 'plots2.pdf'))

If, however, the PDF generation happened at different times during Gentest’s,
trial runs, it will see different PDFs and generate a better test:

def test_plots2_pdf(self):
 patterns = [
 r'^/[A-Z][a-z]+[A-Z][a-z]{3} \(D:[0-9]{14}\)$',
]
 self.assertFileCorrect(os.path.join(self.cwd, 'plots2.pdf'),
 os.path.join(self.refdir, 'plots2.pdf'),
 ignore_patterns=patterns)

It can be hard to see, because PDFs are technically binary files, though
the often mostly consist of text and can be treated more-or-less like text
if you are careful. In fact, the sort of thing they contain is this:

/CreationDate (D:20220220134310)
/ModDate (D:20220220134310)

Fairly obviously these are date stamps: 2022-20-22T12:43:10, written as a
14-digit string.

In the better version of the test, which Gentest generates if its trial runs
produce differing outputs, it decides to ignore lines that match the regular
expression shown, which both of these do.

	If you get this failure, you have a few options. First, Gentest suggests
a diff command you can use to examine the differences.
In fact, the diff command is quite just to say that the files are
binary and differ. This is technically true, though some diff tools
can be persuaded to show the differences anyway.
Even if you can’s see them, what you can definitely do it open the two files
(the diff command includes their full paths) and look at them to see whether
they look the same. Hopefully they will.

	In terms of correcting it, the simplest thing to do is to increase the
number of times the test is run. Depending on how fast your machine is,
the odds are that if you increase the number of runs even to 3, the first
and last will probably run at different times (to the second), and if
you increase it to 10, this will almost certainly be true.

	Alternatively, you can edit the test yourself, but this will require you
to write one or more exclusion patterns, as Gentest did. They can, however,
be simpler. One possibiity is to use ignore_substrings, which ignores
lines that contain the subtrings given:

def test_plots2_pdf(self):
 ignores = [
 '/CreationDate',
 '/ModDate'
]
 self.assertFileCorrect(os.path.join(self.cwd, 'plots2.pdf'),
 os.path.join(self.refdir, 'plots2.pdf'),
 ignore_substrings=ignores)

	In future, Gentest will probably allow you to specify a time two
wait between invocations of the test command, which would be another
way to fix the problem.

Gentest Parameters and Options

The full syntax for gentest is:

tdda gentest [FLAGS] 'command to test' [testfile.py [directories and files]]

where

	command to test is a runnable shell command.
It is normally sensible to enclose it in single quotes, which will
prevent most shell expansion (wildcard _globbing_ etc.) from happening,
protect spaces etc. If you need single quotes in the comman you
want to run, you either need to escape those carefully or use
the wizard instead. Commands can be almost anything, including

	plain shell command such as cat hey

	compiled programs such as someprogram param1 param2

	interpreted programs such as python script param1 param2 param3

	shell scripts such as sh foo.sh or . foo.sh

	pipelines such as grep pattern file | sort | uniq

	make clean all (Plain make would rarely be a good choice
if the Makefile contains dependency checking, because most of
the point of make is run different things different times,
though if you use --no-stdout --no-stderr (see below)
to suppress checking screen output, it might be reasonable.)

	testfile.py is the name of the Python test script to write.
If not specified, or specified as -, a name of the general
form test_sanitized_command.py will be used, where
santized command is derived from the command, removing problematical
characters.

NOTE: Unless you use --no-clobber, no checking is done: new
files will simply overwrite old ones. If you use Gentest twice in
same directory with commands that Gentest santizes the same way,
the second will overwrite the first.

	directories and files is a list of directories and files to be
monitored for changes while the script it run. By default, the
twodirectories checked are the current directory . and the
system temporary directory, as specified by TMPDIR, if set,
failing which /tmp.

The FLAGS (switches, options) available are:

	-?, --?, -h, --help

	Show Gentest’s help message

	-m MAX_FILES, --maxfiles MAX_FILES

	Maximum number of files for Gentest to track.

	-r, --relative-paths

	Show relative paths wherever possible’

	-n ITERATIONS, --iterations

	Number of times to run the command (default 2)

	-O, --no-stdout

	Do not generate a test checking output to stdout

	-E, --no-stderr

	Do not generate a test checking output to stderr

	-Z, --nonzeroexit

	Do not require exit status to be 0

	-C, --no-clobber

	Do not overwrite existing test script or reference directory

Reference Tests

The referencetest module provides support for unit tests,
allowing them to easily compare test results against saved
“known to be correct” reference results.

This is typically useful for testing software that produces any of the following
types of output:

	a CSV file

	a text file (for example: HTML, JSON, logfiles, graphs, tables, etc)

	a string

	a Pandas DataFrame.

The main features are:

	If the comparison between a string and a file fails,
the actual string is written to a file and a diff
command is suggested for seeing the differences between
the actual output and the expected output.

	There is support for CSV files, allowing fine control over
how the comparison is to be performed. This includes:

	the ability to select which columns to compare (and which
to exclude from the comparison).

	the ability to compare metadata (types of fields) as well
as values.

	the ability to specify the precision (as number of decimal places)
for the comparison of floating-point values.

	clear reporting of where the differences are, if the comparison
fails.

	There is support for ignoring lines within the strings/files
that contain particular patterns or regular expressions.
This is typically useful for filtering out things like
version numbers and timestamps that vary in the output
from run to run, but which do not indicate a problem.

	There is support for re-writing the reference output
with the actual output. This, obviously, should be used
only after careful checking that the new output is correct,
either because the previous output was in fact wrong,
or because the intended behaviour has changed.

	It allows you to group your reference results into different kinds.
This means you can keep different kinds of reference result files in
different locations. It also means that you can selectively
choose to only regenerate particular kinds of reference results,
if they need to be updated because they turned out to have been
wrong or if the intended behaviour has changed.
Kinds are strings.

Prerequisites

	pandas optional, required for CSV file support, see https://pandas.pydata.org.

	pytest optional, required for tests based on pytest rather than unittest, see https://docs.pytest.org.

These can be installed with:

pip install pandas
pip install pytest

The module provides interfaces for this to be called from unit-tests
based on either the standard Python unittest framework,
or on pytest.

Simple Examples

Simple unittest example:

For use with unittest, the
ReferenceTest API is provided
through the ReferenceTestCase
class. This is an extension to the standard unittest.TestCase
class, so that the ReferenceTest methods can be called directly from
unittest tests.

This example shows how to write a test for a function that generates
a CSV file:

from tdda.referencetest import ReferenceTestCase, tag
import my_module

class MyTest(ReferenceTestCase):
 @tag
 def test_my_csv_file(self):
 result = my_module.produce_a_csv_file(self.tmp_dir)
 self.assertCSVFileCorrect(result, 'result.csv')

MyTest.set_default_data_location('testdata')

if __name__ == '__main__':
 ReferenceTestCase.main()

To run the test:

python mytest.py

The test is tagged with @tag, meaning that it will be included if
you run the tests with the --tagged option flag to specify that only
tagged tests should be run:

python mytest.py --tagged

The first time you run the test, it will produce an error unless you
have already created the expected (“reference”) results. You can
create the reference results automatically

python mytest.py --write-all

Having generated the reference results, you should carefully examine
the files it has produced in the data output location, to check that
they are as expected.

Simple pytest example:

For use with pytest, the
ReferenceTest API is provided
through the referencepytest module. This is
a module that can be imported directly from pytest tests, allowing them
to access ReferenceTest
methods and properties.

This example shows how to write a test for a function that generates
a CSV file:

from tdda.referencetest import referencepytest, tag
import my_module

@tag
def test_my_csv_function(ref):
 resultfile = my_module.produce_a_csv_file(ref.tmp_dir)
 ref.assertCSVFileCorrect(resultfile, 'result.csv')

referencepytest.set_default_data_location('testdata')

You also need a conftest.py file, to define the fixtures and defaults:

import pytest
from tdda.referencetest import referencepytest

def pytest_addoption(parser):
 referencepytest.addoption(parser)

def pytest_collection_modifyitems(session, config, items):
 referencepytest.tagged(config, items)

@pytest.fixture(scope='module')
def ref(request):
 return referencepytest.ref(request)

referencepytest.set_default_data_location('testdata')

To run the test:

pytest

The test is tagged with @tag, meaning that it will be included if
you run the tests with the --tagged option flag to specify that only
tagged tests should be run:

pytest --tagged

The first time you run the test, it will produce an error unless you
have already created the expected (“reference”) results. You can
create the reference results automatically:

pytest --write-all -s

Having generated the reference results, you should examine the files it has
produced in the data output location, to check that they are as expected.

Methods and Functions

	
class tdda.referencetest.referencetest.ReferenceTest(assert_fn)

	The ReferenceTest class
provides support for comparing results against a set of reference
“known to be correct” results.

The functionality provided by this class can be used with:

	the standard Python unittest framework, using the
ReferenceTestCase
class. This is a subclass of, and therefore a drop-in replacement
for, unittest.TestCase. It extends that class with all
of the methods from the
ReferenceTest class.

	the pytest framework, using the
referencepytest module.
This module provides all of the methods from the
ReferenceTest class,
exposed as functions that can be called directly from tests
in a pytest suite.

In addition to the various test-assertion methods, the module also
provides some useful instance variables. All of these can be set
explicitly in test setup code, using the set_defaults()
class method.

	
all_fields_except(exclusions)

	Helper function, for using with check_data, check_types and
check_order parameters to assertion functions for Pandas DataFrames.
It returns the names of all of the fields in the DataFrame being
checked, apart from the ones given.

exclusions is a list of field names.

	
assertBinaryFileCorrect(actual_path, ref_path, kind=None)

	Check that a binary file matches the contents from a reference
binary file.

	actual_path:

	A path for a binary file.

	ref_path:

	The name of the reference binary file. The
location of the reference file is determined by
the configuration via
set_data_location().

	kind:

	The reference kind, used to locate the reference file.

	
assertCSVFileCorrect(actual_path, ref_csv, kind='csv', csv_read_fn=None, check_data=None, check_types=None, check_order=None, condition=None, sortby=None, precision=None, **kwargs)

	Check that a CSV file matches a reference one.

	actual_path:

	Actual CSV file.

	ref_csv:

	Name of reference CSV file. The location of the
reference file is determined by the configuration
via set_data_location().

	kind:

	(Optional) reference kind (a string; see above), used to locate
the reference CSV file.

	csv_read_fn:

	(Optional) function to read a CSV file to obtain
a pandas DataFrame. If None, then a default
CSV loader is used.

The default CSV loader function is a wrapper around Pandas
pd.read_csv(), with default options as follows:

	index_col is None

	infer_datetime_format is True

	quotechar is "

	quoting is csv.QUOTE_MINIMAL

	escapechar is \ (backslash)

	na_values are the empty string, "NaN", and "NULL"

	keep_default_na is False

	**kwargs:

	Any additional named parameters are passed
straight through to the csv_read_fn function.

It also accepts the check_data, check_types, check_order,
check_extra_cols, sortby, condition and precision
optional parameters described in assertDataFramesEqual().

Raises NotImplementedError if Pandas is not available.

	
assertCSVFilesCorrect(actual_paths, ref_csvs, kind='csv', csv_read_fn=None, check_data=None, check_types=None, check_order=None, condition=None, sortby=None, precision=None, **kwargs)

	Check that a set of CSV files match corresponding reference ones.

	actual_paths:

	List of actual CSV files.

	ref_csvs:

	List of names of matching reference CSV files. The
location of the reference files is determined by
the configuration via set_data_location().

	kind:

	(Optional) reference kind (a string; see above), used to locate
the reference CSV file.

	csv_read_fn:

	(Optional) function to read a CSV file to obtain
a pandas DataFrame. If None, then a default
CSV loader is used.

The default CSV loader function is a wrapper around Pandas
pd.read_csv(), with default options as follows:

	index_col is None

	infer_datetime_format is True

	quotechar is "

	quoting is csv.QUOTE_MINIMAL

	escapechar is \ (backslash)

	na_values are the empty string, "NaN", and "NULL"

	keep_default_na is False

	**kwargs:

	Any additional named parameters are passed straight
through to the csv_read_fn function.

It also accepts the check_data, check_types, check_order,
check_extra_cols, sortby, condition and precision
optional parameters described in assertDataFramesEqual().

Raises NotImplementedError if Pandas is not available.

	
assertDataFrameCorrect(df, ref_csv, actual_path=None, kind='csv', csv_read_fn=None, check_data=None, check_types=None, check_order=None, condition=None, sortby=None, precision=None, **kwargs)

	Check that an in-memory Pandas DataFrame matches a reference one
from a saved reference CSV file.

	df:

	Actual DataFrame.

	ref_csv:

	Name of reference CSV file. The location of the
reference file is determined by the configuration
via set_data_location().

	actual_path:

	Optional parameter, giving path for file where
actual DataFrame originated, used for error
messages.

	kind:

	(Optional) reference kind (a string; see above), used to locate
the reference CSV file.

	csv_read_fn:

	(Optional) function to read a CSV file to obtain
a pandas DataFrame. If None, then a default
CSV loader is used.

The default CSV loader function is a wrapper around Pandas
pd.read_csv(), with default options as follows:

	index_col is None

	infer_datetime_format is True

	quotechar is "

	quoting is csv.QUOTE_MINIMAL

	escapechar is \ (backslash)

	na_values are the empty string, "NaN", and "NULL"

	keep_default_na is False

It also accepts the check_data, check_types, check_order,
check_extra_cols, sortby, condition and precision
optional parameters described in assertDataFramesEqual().

Raises NotImplementedError if Pandas is not available.

	
assertDataFramesEqual(df, ref_df, actual_path=None, expected_path=None, check_data=None, check_types=None, check_order=None, condition=None, sortby=None, precision=None)

	Check that an in-memory Pandas DataFrame matches an in-memory
reference one.

	df:

	Actual DataFrame.

	ref_df:

	Expected DataFrame.

	actual_path:

	(Optional) path for file where
actual DataFrame originated, used for error messages.

	expected_path:

	(Optional) path for file where
expected DataFrame originated, used for error messages.

	check_data:

	(Optional) restriction of fields whose values should
be compared.
Possible values are:

	None or True (to apply the comparison to
all fields; this is the default).

	False (to skip the comparison completely)

	a list of field names (to check only these fields)

	a function taking a DataFrame as its single
parameter,
and returning a list of field names to check.

	check_types:

	(Optional) restriction of fields whose types should be
compared.
See check_data (above) for possible values.

	check_order:

	(Optional) restriction of fields whose (relative)
order should be compared.
See check_data (above) for possible values.

	check_extra_cols:

	(Optional) restriction of extra fields in the actual dataset
which, if found, will cause the check to fail.
See check_data (above) for possible values.

	sortby:

	(Optional) specification of fields to sort by before comparing.

	None or False (do not sort; this is the default)

	True (to sort on all fields based on their
order in the reference datasets; you probably
don’t want to use this option)

	a list of field names (to sort on these fields, in order)

	a function taking a DataFrame (which will be
the reference data frame) as its single
parameter,
and returning a list of field names to sort on.

	condition:

	(Optional) filter to be applied to datasets before comparing.
It can be None, or can be a function that
takes a DataFrame as its single parameter and
returns a vector of booleans (to specify which rows
should be compared).

	precision:

	(Optional) number of decimal places to use for
floating-point comparisons. Default is not to perform
rounding.

Raises NotImplementedError if Pandas is not available.

	
assertFileCorrect(actual_path, ref_path, kind=None, lstrip=False, rstrip=False, ignore_substrings=None, ignore_patterns=None, remove_lines=None, ignore_lines=None, preprocess=None, max_permutation_cases=0, encoding=None)

	Check that a text file matches the contents from a reference text file.

	actual_path:

	A path for a text file.

	ref_path:

	The name of the reference file. The
location of the reference file is determined by
the configuration via
set_data_location().

It also accepts the kind, lstrip, rstrip,
ignore_substrings, ignore_patterns, remove_lines,
preprocess and max_permutation_cases
optional parameters described in assertStringCorrect().

This should be used for unstructured data such as logfiles, etc.
For CSV files, use assertCSVFileCorrect() instead.

The ignore_lines parameter exists for backwards compatibility as
an alias for remove_lines.

The assertFileCorrect() method can be used as an alias for
assertTextFileCorrect(), retained for backwards
compatibility.

	
assertFilesCorrect(actual_paths, ref_paths, kind=None, lstrip=False, rstrip=False, ignore_substrings=None, ignore_patterns=None, remove_lines=None, ignore_lines=None, preprocess=None, max_permutation_cases=0, encodings=None)

	Check that a collection of text files matche the contents from
matching collection of reference text files.

	actual_paths:

	A list of paths for text files.

	ref_paths:

	A list of names of the matching reference
files. The location of the reference files
is determined by the configuration via
set_data_location().

This should be used for unstructured data such as logfiles, etc.
For CSV files, use assertCSVFileCorrect() instead.

It also accepts the kind, lstrip, rstrip,
ignore_substrings, ignore_patterns, remove_lines,
preprocess and max_permutation_cases
optional parameters described in assertStringCorrect().

The assertFilesCorrect() metohd can be used as an alias for
assertTextFilesCorrect(), retained for backwards
compatibility.

	
assertStringCorrect(string, ref_path, kind=None, lstrip=False, rstrip=False, ignore_substrings=None, ignore_patterns=None, remove_lines=None, ignore_lines=None, preprocess=None, max_permutation_cases=0)

	Check that an in-memory string matches the contents from a reference
text file.

	string:

	The actual string.

	ref_path:

	The name of the reference file. The
location of the reference file is
determined by the configuration via
set_data_location().

	kind:

	The reference kind, used to locate the reference file.

	lstrip:

	If set to True, both strings are
left-stripped before the comparison is carried out.
Note: the stripping is on a per-line basis.

	rstrip:

	If set to True, both strings are
right-stripped before the comparison is carried out.
Note: the stripping is on a per-line basis.

	ignore_substrings:

	An optional list of substrings; lines
containing any of these substrings will be
ignored in the comparison.

	ignore_patterns:

	An optional list of regular expressions;
lines will be considered to be the same if
they only differ in substrings that match
one of these regular expressions.
The expressions should only include explicit anchors if they
need to refer to the whole line.
Only the matched expression within the line is ignored; any text
to the left or right of the matched expression must either be
exactly the same on both sides, or be ignorable.

	remove_lines

	An optional list of substrings; lines
containing any of these substrings will be
completely removed before carrying out the
comparison. This is the means by which you
would exclude ‘optional’ content.

	preprocess:

	An optional function that takes a list of
strings and preprocesses it in some way; this
function will be applied to both the actual and expected.

	max_permutation_cases:

	An optional number specifying the maximum
number of permutations allowed; if the actual
and expected lists differ only in that their
lines are permutations of each other, and
the number of such permutations does not
exceed this limit, then the two are considered to be identical.

The ignore_lines parameter exists for backwards compatibility as
an alias for remove_lines.

	
assertTextFileCorrect(actual_path, ref_path, kind=None, lstrip=False, rstrip=False, ignore_substrings=None, ignore_patterns=None, remove_lines=None, ignore_lines=None, preprocess=None, max_permutation_cases=0, encoding=None)

	Check that a text file matches the contents from a reference text file.

	actual_path:

	A path for a text file.

	ref_path:

	The name of the reference file. The
location of the reference file is determined by
the configuration via
set_data_location().

It also accepts the kind, lstrip, rstrip,
ignore_substrings, ignore_patterns, remove_lines,
preprocess and max_permutation_cases
optional parameters described in assertStringCorrect().

This should be used for unstructured data such as logfiles, etc.
For CSV files, use assertCSVFileCorrect() instead.

The ignore_lines parameter exists for backwards compatibility as
an alias for remove_lines.

The assertFileCorrect() method can be used as an alias for
assertTextFileCorrect(), retained for backwards
compatibility.

	
assertTextFilesCorrect(actual_paths, ref_paths, kind=None, lstrip=False, rstrip=False, ignore_substrings=None, ignore_patterns=None, remove_lines=None, ignore_lines=None, preprocess=None, max_permutation_cases=0, encodings=None)

	Check that a collection of text files matche the contents from
matching collection of reference text files.

	actual_paths:

	A list of paths for text files.

	ref_paths:

	A list of names of the matching reference
files. The location of the reference files
is determined by the configuration via
set_data_location().

This should be used for unstructured data such as logfiles, etc.
For CSV files, use assertCSVFileCorrect() instead.

It also accepts the kind, lstrip, rstrip,
ignore_substrings, ignore_patterns, remove_lines,
preprocess and max_permutation_cases
optional parameters described in assertStringCorrect().

The assertFilesCorrect() metohd can be used as an alias for
assertTextFilesCorrect(), retained for backwards
compatibility.

	
set_data_location(location, kind=None)

	Declare the filesystem location for reference files of a
particular kind. Typically you would subclass
ReferenceTestCase and pass in these locations though its
__init__ method when constructing an instance of
ReferenceTestCase as a superclass.

If calls to assertTextFileCorrect() (etc) are made for
kinds of reference data that hasn’t had their location defined
explicitly, then the
default location is used. This is the location declared for
the None kind and this default must be specified.

This method overrides any global defaults set from calls to the
ReferenceTest.set_default_data_location() class-method.

If you haven’t even defined the None default, and you make calls
to assertTextFileCorrect() (etc) using relative pathnames
for the reference data files, then it can’t check correctness, so it
will raise an exception.

	
classmethod set_default_data_location(location, kind=None)

	Declare the default filesystem location for reference files of a
particular kind. This sets the location for all instances of the class
it is called on. Subclasses will inherit this default (unless they
explicitly override it).

To set the location globally for all tests in all classes
within an application, call this method on the
ReferenceTest class.

The instance method set_data_location() can be used to set
the per-kind data locations for an individual instance of a class.

If calls to assertTextFileCorrect() (etc) are made for
kinds of reference data that hasn’t had their location defined
explicitly, then the
default location is used. This is the location declared for
the None kind and this default must be specified.

If you haven’t even defined the None default, and you make calls
to assertTextFileCorrect() (etc) using relative pathnames
for the reference data files, then it can’t check correctness, so it
will raise an exception.

	
classmethod set_defaults(**kwargs)

	Set default parameters, at the class level. These defaults will
apply to all instances of the class.

The following parameters can be set:

	verbose:

	Sets the boolean verbose flag globally, to control
reporting of errors while running tests. Reference
tests tend to take longer to run than traditional
unit tests, so it is often useful to be able to see
information from failing tests as they happen, rather
than waiting for the full report at the end. Verbose
is set to True by default.

	print_fn: Sets the print function globally, to specify

	the function to use to display information while
running tests. The function have the same signature
as Python3’s standard print function, a default
print function is used which writes unbuffered to
sys.stdout.

	tmp_dir:

	Sets the tmp_dir property globally, to specify the
directory where temporary files are written.
Temporary files are created whenever a text file
check fails and a ‘preprocess’ function has been
specified. It’s useful to be able to see the contents
of the files after preprocessing has taken place,
so preprocessed versions of the files are written
to this directory, and their pathnames are included
in the failure messages. If not explicitly set by
set_defaults(), the environment variable
TDDA_FAIL_DIR is used, or, if that is not defined,
it defaults to /tmp, c:temp or whatever
tempfile.gettempdir() returns, as
appropriate.

	
classmethod set_regeneration(kind=None, regenerate=True)

	Set the regeneration flag for a particular kind of reference file,
globally, for all instances of the class.

If the regenerate flag is set to True, then the framework will
regenerate reference data of that kind, rather than comparing.

All of the regeneration flags are set to False by default.

	
tdda.referencetest.referencetest.tag(test)

	Decorator for tests, so that you can specify you only want to
run a tagged subset of tests, with the -1 or –tagged option.

unittest Framework Support

This module provides the
ReferenceTestCase class,
which extends the
standard unittest.TestCase test-case class, augmenting it
with methods for checking correctness of files against reference data.

It also provides a main() function, which can be used to run (and
regenerate) reference tests which have been implemented using subclasses
of ReferenceTestCase.

For example:

from tdda.referencetest import ReferenceTestCase
import my_module

class TestMyClass(ReferenceTestCase):
 def test_my_csv_function(self):
 result = my_module.my_csv_function(self.tmp_dir)
 self.assertCSVFileCorrect(result, 'result.csv')

 def test_my_pandas_dataframe_function(self):
 result = my_module.my_dataframe_function()
 self.assertDataFrameCorrect(result, 'result.csv')

 def test_my_table_function(self):
 result = my_module.my_table_function()
 self.assertStringCorrect(result, 'table.txt', kind='table')

 def test_my_graph_function(self):
 result = my_module.my_graph_function()
 self.assertStringCorrect(result, 'graph.txt', kind='graph')

TestMyClass.set_default_data_location('testdata')

if __name__ == '__main__':
 ReferenceTestCase.main()

Tagged Tests

If the tests are run with the --tagged or -1 (the digit one)
command-line option, then only tests that have been decorated with
referencetest.tag, are run. This is a mechanism for allowing
only a chosen subset of tests to be run, which is useful during
development. The @tag decorator can be applied to either test
classes or test methods.

If the tests are run with the --istagged or -0 (the digit
zero) command-line option, then no tests are run; instead, the
framework reports the full module names of any test classes that have
been decorated with @tag, or which contain any tests that have been
decorated with @tag.

For example:

from tdda.referencetest import ReferenceTestCase, tag
import my_module

class TestMyClass1(ReferenceTestCase):
 @tag
 def test_a(self):
 ...

 def test_b(self):
 ...

@tag
class TestMyClass2(ReferenceTestCase):
 def test_x(self):
 ...

 def test_y(self):
 ...

If run with python mytests.py --tagged, only the tagged tests are
run (TestMyClass1.test_a, TestMyClass2.test_x and
TestMyClass2.test_y).

Regeneration of Results

When its main is run with --write-all or --write (or -W or -w
respectively), it causes the framework to regenerate reference data
files. Different kinds of reference results can be regenerated by
passing in a comma-separated list of kind names immediately after
the --write option. If no list of kind names is provided, then all
test results will be regenerated.

To regenerate all reference results (or generate them for the first time)

pytest -s --write-all

To regenerate just a particular kind of reference (e.g. table results)

python my_tests.py --write table

To regenerate a number of different kinds of reference (e.g. both table
and graph results)

python my_tests.py --write table graph

unittest Integration Details

	
class tdda.referencetest.referencetestcase.ReferenceTestCase(*args, **kwargs)

	Wrapper around the
ReferenceTest
class to allow it to operate as a test-case class using the
unittest testing framework.

The ReferenceTestCase class is a mix-in of
unittest.TestCase
and ReferenceTest,
so it can be used as the base class for unit tests, allowing the
tests to use any of the standard unittest assert methods,
and also use any of the referencetest assert extensions.

	
static main(module=None, argv=None, **kw)

	Wrapper around the unittest.main() entry point.

This is the same as the main()
function, and is provided just as a convenience, as it means that
tests using the ReferenceTestCase class only need to import
that single class on its own.

	
tag()

	Decorator for tests, so that you can specify you only want to
run a tagged subset of tests, with the -1 or –tagged option.

	
class tdda.referencetest.referencetestcase.TaggedTestLoader(check, printer=None)

	Subclass of TestLoader, which strips out any non-tagged tests.

	
getTestCaseNames(testCaseClass)

	Return a sorted sequence of method names found within testCaseClass

	
loadTestsFromModule(*args, **kwargs)

	Return a suite of all test cases contained in the given module

	
loadTestsFromName(*args, **kwargs)

	Return a suite of all test cases given a string specifier.

The name may resolve either to a module, a test case class, a
test method within a test case class, or a callable object which
returns a TestCase or TestSuite instance.

The method optionally resolves the names relative to a given module.

	
loadTestsFromNames(*args, **kwargs)

	Return a suite of all test cases found using the given sequence
of string specifiers. See ‘loadTestsFromName()’.

	
loadTestsFromTestCase(*args, **kwargs)

	Return a suite of all test cases contained in testCaseClass

	
tdda.referencetest.referencetestcase.main()

	Wrapper around the unittest.main() entry point.

pytest Framework Support

This provides all of the methods in the
ReferenceTest class,
in a way that allows them to be used as pytest fixtures.

This allows these functions to be called from tests running from the
pytest framework.

For example:

import my_module

def test_my_csv_function(ref):
 resultfile = my_module.my_csv_function(ref.tmp_dir)
 ref.assertCSVFileCorrect(resultfile, 'result.csv')

def test_my_pandas_dataframe_function(ref):
 resultframe = my_module.my_dataframe_function()
 ref.assertDataFrameCorrect(resultframe, 'result.csv')

def test_my_table_function(ref):
 result = my_module.my_table_function()
 ref.assertStringCorrect(result, 'table.txt', kind='table')

def test_my_graph_function(ref):
 result = my_module.my_graph_function()
 ref.assertStringCorrect(result, 'graph.txt', kind='graph')

class TestMyClass:
 def test_my_other_table_function(ref):
 result = my_module.my_other_table_function()
 ref.assertStringCorrect(result, 'table.txt', kind='table')

with a conftest.py containing:

from tdda.referencetest.pytestconfig import (pytest_addoption,
 pytest_collection_modifyitems,
 set_default_data_location,
 ref)

set_default_data_location('testdata')

This configuration enables the additional command-line options,
and also provides a ref fixture, as an instance of the
ReferenceTest class.
Of course, for brevity, if you prefer, you can use:

from tdda.referencetest.pytestconfig import *

rather than importing the four individual items if you are not
customising anything yourself, but that is less flexible.

This example also sets a default data location which will apply to
all reference fixtures. This means that any tests that use ref will
automatically be able to locate their “expected results” reference data
files.

Reference Fixtures

The default configuration provides a single fixture, ref.

To configure a large suite of tests so that tests do not all have to
share a single common reference-data location, you can set up additional
reference fixtures, configured differently. For example, to set up a fixure
ref_special, whose reference data is stored in ../specialdata, you
could include:

@pytest.fixture(scope='module')
def ref_special(request):
 r = referencepytest.ref(request)
 r.set_data_location('../specialdata')
 return r

Tests can use this additional fixture:

import my_special_module

def test_something(ref_special):
 result = my_special_module.something()
 ref_special.assertStringCorrect(resultfile, 'something.csv')

Tagged Tests

If the tests are run with the --tagged
command-line option, then only tests that have been decorated with
referencetest.tag, are run. This is a mechanism for allowing
only a chosen subset of tests to be run, which is useful during
development. The @tag decorator can be applied to test functions,
test classes and test methods.

If the tests are run with the --istagged command-line option,
then no tests are run; instead, the
framework reports the full module names of any test classes or functions
that have been decorated with @tag, or classes which contain any
test methods that have been decorated with @tag.

For example:

from tdda.referencetest import tag

@tag
def test_a(ref):
 assert 'a' + 'a' == 'aa'

def test_b(ref):
 assert 'b' * 2 == 'bb'

@tag
class TestMyClass:
 def test_x(self):
 list('xxx') == ['x', 'x', 'x']

 def test_y(self):
 'y'.upper() == 'Y'

If run with pytest --tagged, only the tagged tests are
run (test_a, TestMyClass.test_x and TestMyClass.test_y).

Regeneration of Results

When pytest is run with --write-all or --write, it causes
the framework to regenerate reference data files. Different kinds of
reference results can be regenerated by passing in a comma-separated list
of kind names immediately after the --write option. If no list
of kind names is provided, then all test results will be regenerated.

If the -s option is also provided (to disable pytest
output capturing), it will report the names of all the files it has
regenerated.

To regenerate all reference results (or generate them for the first time)

pytest -s --write-all

To regenerate just a particular kind of reference (e.g. table results)

pytest -s --write table

To regenerate a number of different kinds of reference (e.g. both table
and graph results)

pytest -s --write table graph

pytest Integration Details

In addition to all of the methods from
ReferenceTest,
the following functions are provided, to allow easier integration
with the pytest framework.

Typically your test code would not need to call any of these methods
directly (apart from set_default_data_location()), as they are
all enabled automatically if you import the default ReferenceTest
configuration into your conftest.py file:

from tdda.referencetest.pytestconfig import *

	
tdda.referencetest.referencepytest.addoption(parser)

	Support for the --write and --write-all command-line options.

A test’s conftest.py file should declare extra options by
defining a pytest_addoption function which should just call this.

It extends pytest to include --write and --write-all option
flags which can be used to control regeneration of reference results.

	
tdda.referencetest.referencepytest.ref(request)

	Support for dependency injection via a pytest fixture.

A test’s conftest.py should define a fixture function for injecting
a ReferenceTest instance,
which should just call this function.

This allows tests to get access to a private instance of that class.

	
tdda.referencetest.referencepytest.set_default_data_location(location, kind=None)

	This provides a mechanism for setting the default reference data
location in the ReferenceTest
class.

It takes the same parameters as
tdda.referencetest.referencetest.ReferenceTest.set_default_data_location().

If you want the same data locations for all your tests, it can be easier
to set them with calls to this function, rather than having to set them
explicitly in each test (or using
set_data_location()
in your @pytest.fixture ref definition in your conftest.py file).

	
tdda.referencetest.referencepytest.set_defaults(**kwargs)

	This provides a mechanism for setting default attributes in
the ReferenceTest class.

It takes the same parameters as
tdda.referencetest.referencetest.ReferenceTest.set_defaults(),
and can be used for setting parameters such as the tmp_dir property.

If you want the same defaults for all your tests, it can be easier to
set them with a call to this function, rather than having to set them
explicitly in each test (or in your @pytest.fixture ref definition
in your conftest.py file).

	
tdda.referencetest.referencepytest.tagged(config, items)

	Support for @tag to mark tests to be run with --tagged or reported
with --istagged.

It extends pytest to recognize the --tagged and --istagged
command-line flags, to restrict testing to tagged tests only.

Reference Test Examples

The tdda.referencetest module includes a set of examples,
for both unittest and pytest.

To copy these examples, run the command:

tdda examples referencetest [directory]

If directory is not supplied referencetest-examples will be used.

Alternatively, you can copy all examples using the following command:

tdda examples

which will create a number of separate subdirectories.

TDDA’s Constraints API

tdda.constraints

	
tdda.constraints.discover_db_table(dbtype, db, tablename, inc_rex=False, seed=None)

	Automatically discover potentially useful constraints that characterize
the database table provided.

Input:

	dbtype:

	Type of database.

	db:

	a database object

	tablename:

	a table name

Possible return values:

	DatasetConstraints object

	None — (if no constraints were found).

This function goes through each column in the table and, where
appropriate, generates constraints that describe (and are satisified
by) this dataframe.

Assuming it generates at least one constraint for at least one field
it returns a tdda.constraints.base.DatasetConstraints object.

This includes a ‘fields’ attribute, keyed on the column name.

The returned DatasetConstraints object
includes a to_json()
method, which converts the constraints into JSON for saving as a tdda
constraints file. By convention, such JSON files use a ‘.tdda’
extension.

The JSON constraints file can be used to check whether other datasets
also satisfy the constraints.

The kinds of constraints (potentially) generated for each field (column)
are:

	type:

	the (coarse, TDDA) type of the field. One of
‘bool’, ‘int’, ‘real’, ‘string’ or ‘date’.

	min:

	for non-string fields, the minimum value in the column.
Not generated for all-null columns.

	max:

	for non-string fields, the maximum value in the column.
Not generated for all-null columns.

	min_length:

	For string fields, the length of the shortest string(s)
in the field.

	max_length:

	For string fields, the length of the longest string(s)
in the field.

	sign:

	If all the values in a numeric field have consistent sign,
a sign constraint will be written with a value chosen from:

	positive — For all values v in field: v > 0

	non-negative — For all values v in field: v >= 0

	zero — For all values v in field: v == 0

	non-positive — For all values v in field: v <= 0

	negative — For all values v in field: v < 0

	null — For all values v in field: v is null

	max_nulls:

	The maximum number of nulls allowed in the field.

	If the field has no nulls, a constraint
will be written with max_nulls set to zero.

	If the field has a single null, a constraint will
be written with max_nulls set to one.

	If the field has more than 1 null, no constraint
will be generated.

	no_duplicates:

	For string fields (only, for now), if every
non-null value in the field is different,
this constraint will be generated (with value True);
otherwise no constraint will be generated. So this constraint
indicates that all the non-null values in a string
field are distinct (unique).

	allowed_values:

	For string fields only, if there are
MAX_CATEGORIES or fewer distinct string
values in the dataframe, an AllowedValues constraint
listing them will be generated.
MAX_CATEGORIES is currently “hard-wired” to 20.

Regular Expression constraints are not (currently) generated for fields
in database tables.

Example usage:

import pgdb
from tdda.constraints import discover_db_table

dbspec = 'localhost:databasename:username:password'
tablename = 'schemaname.tablename'
db = pgdb.connect(dbspec)
constraints = discover_db_table('postgres', db, tablename)

with open('myconstraints.tdda', 'w') as f:
 f.write(constraints.to_json())

	
tdda.constraints.verify_db_table(dbtype, db, tablename, constraints_path, epsilon=None, type_checking='strict', testing=False, report='all', **kwargs)

	Verify that (i.e. check whether) the database table provided
satisfies the constraints in the JSON .tdda file provided.

Mandatory Inputs:

	dbtype:

	Type of database.

	db:

	A database object

	tablename:

	A database table name, to be checked.

	constraints_path:

	The path to a JSON .tdda file (possibly
generated by the discover_constraints
function, below) containing constraints
to be checked.

Optional Inputs:

	epsilon:

	When checking minimum and maximum values
for numeric fields, this provides a
tolerance. The tolerance is a proportion
of the constraint value by which the
constraint can be exceeded without causing
a constraint violation to be issued.

For example, with epsilon set to 0.01 (i.e. 1%),
values can be up to 1% larger than a max constraint
without generating constraint failure,
and minimum values can be up to 1% smaller
that the minimum constraint value without
generating a constraint failure. (These
are modified, as appropriate, for negative
values.)

If not specified, an epsilon of 0 is used,
so there is no tolerance.

NOTE: A consequence of the fact that these
are proportionate is that min/max values
of zero do not have any tolerance, i.e.
the wrong sign always generates a failure.

	type_checking:

	strict or sloppy. For databases (unlike
Pandas DataFrames), this defaults to ‘strict’.

If this is set to sloppy, a database “real”
column c will only be allowed to satisfy a
an “int” type constraint.

	report:

	all or fields.
This controls the behaviour of the
__str__()
method on the resulting
DatabaseVerification
object (but not its content).

The default is all, which means that
all fields are shown, together with the
verification status of each constraint
for that field.

If report is set to fields, only fields for
which at least one constraint failed are shown.

	testing:

	Boolean flag. Should only be set to True
when being run as part of an automated test.
It suppresses type-compatibility warnings.

Returns:

DatabaseVerification object.

This object has attributes:

	passed — Number of passing constriants

	failures — Number of failing constraints

Example usage:

import pgdb
from tdda.constraints import verify_db_table

dbspec = 'localhost:databasename:username:password'
tablename = 'schemaname.tablename'
db = pgdb.connect(dbspec)
v = verify_db_table('postgres' db, tablename, 'myconstraints.tdda')

print('Constraints passing:', v.passes)
print('Constraints failing: %d\n' % v.failures)
print(str(v))

	
tdda.constraints.detect_db_table(dbtype, db, tablename, constraints_path, epsilon=None, type_checking='strict', testing=False, **kwargs)

	For detection of failures from verification of constraints, but
not yet implemented for database tables.

TDDA constraint discovery and verification is provided for a number
of DB-API (PEP-0249) compliant databases, and also for a number of other
(NoSQL) databases.

The top-level functions are:

	tdda.constraints.discover_db_table():

	Discover constraints from a single database table.

	tdda.constraints.verify_db_table():

	Verify (check) a single database table, against a set of previously
discovered constraints.

	tdda.constraints.detect_db_table():

	For detection of failing records in a single database table,
but not yet implemented for databases.

	
class tdda.constraints.db.constraints.DatabaseConstraintCalculator(tablename, testing=False)

	
	
calc_all_non_nulls_boolean(colname)

	Checks whether all the non-null values in a column are boolean.
Returns True of they are, and False otherwise.

This is only required for implementations where a dataset column
may contain values of mixed type.

	
calc_max(colname)

	Calculates the maximum (non-null) value in the named column.

	
calc_max_length(colname)

	Calculates the length of the longest string(s) in the named column.

	
calc_min(colname)

	Calculates the minimum (non-null) value in the named column.

	
calc_min_length(colname)

	Calculates the length of the shortest string(s) in the named column.

	
calc_non_integer_values_count(colname)

	Calculates the number of unique non-integer values in a column

This is only required for implementations where a dataset column
may contain values of mixed type.

	
calc_non_null_count(colname)

	Calculates the number of nulls in a column

	
calc_null_count(colname)

	Calculates the number of nulls in a column

	
calc_nunique(colname)

	Calculates the number of unique non-null values in a column

	
calc_rex_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies a given regular
expression constraint (by matching at least one of the regular
expressions given).

Returns a ‘truthy’ value (typically the set of the strings that do
not match any of the regular expressions) on failure, and a ‘falsy’
value (typically False or None or an empty set) if there are no
failures. Any contents of the returned value are used in the case
where detect is set, by the corresponding extension method for
recording detection results.

	
calc_tdda_type(colname)

	Calculates the TDDA type of a column

	
calc_unique_values(colname, include_nulls=True)

	Calculates the set of unique values (including or excluding nulls)
in a column

	
column_exists(colname)

	Returns whether this column exists in the dataset

	
find_rexes(colname, values=None, seed=None)

	Generate a list of regular expressions that cover all of
the patterns found in the (string) column.

	
get_column_names()

	Returns a list containing the names of all the columns

	
get_nrecords()

	Return total number of records

	
is_null(value)

	Determine whether a value is null

	
to_datetime(value)

	Convert a value to a datetime

	
types_compatible(x, y, colname=None)

	Determine whether the types of two values are compatible

	
class tdda.constraints.db.constraints.DatabaseConstraintVerifier(dbtype, db, tablename, epsilon=None, type_checking='strict', testing=False)

	A DatabaseConstraintVerifier object provides methods
for verifying every type of constraint against a single database table.

	
class tdda.constraints.db.constraints.DatabaseVerification(*args, **kwargs)

	A DatabaseVerification object is the variant of
the tdda.constraints.base.Verification object used for
verification of constraints on a database table.

	
class tdda.constraints.db.constraints.DatabaseConstraintDiscoverer(dbtype, db, tablename, inc_rex=False, seed=None)

	A DatabaseConstraintDiscoverer object is used to discover
constraints on a single database table.

Extension Framework

The tdda command-line utility provides built-in support for constraint
discovery and verification for tabular data stored in CSV files, Pandas
DataFrames saved in .feather files, and for a tables in a variety of
different databases.

The utility can be extended to provide support for constraint discovery
and verification for other kinds of data, via its Python extension framework.

The framework will automatically use any extension implementations that
have been declared using the TDDA_EXTENSIONS environment variable. This
should be set to a list of class names, for Python classes that extend the
ExtensionBase base class.

The class names in the TDDA_EXTENSIONS environment variable should be
colon-separated for Unix systems, or semicolon-separated for Microsoft
Windows. To be usable, the classes must be accessible by Python (either
by being installed in Pythons standard module directory, or by being
included in the PYTHONPATH environment variable.

For example:

export TDDA_EXTENSIONS="mytdda.MySpecialExtension"
export PYTHONPATH="/my/python/sources:$PYTHONPATH"

With these in place, the tdda command will include constraint discovery
and verification using the MySpecialExtension implementation class
provided in the Python file /my/python/sources/mytdda.py.

An example of a simple extension is included with the set of standard
examples. See Examples.

Extension Overview

An extension should provide:

	an implementation (subclass) of ExtensionBase, to
provide a command-line interface, extending the tdda command
to support a particular type of input data.

	an implementation (subclass) of BaseConstraintCalculator,
to provide methods for computing individual constraint results.

	an implementation (subclass) of BaseConstraintDetector,
to provide methods for generating detection results.

A typical implementation looks like:

from tdda.constraints.flags import discover_parser, discover_flags
from tdda.constraints.flags import verify_parser, verify_flags
from tdda.constraints.flags import detect_parser, detect_flags
from tdda.constraints.extension import ExtensionBase
from tdda.constraints.base import DatasetConstraints, Detection
from tdda.constraints.baseconstraints import (BaseConstraintCalculator,
 BaseConstraintVerifier,
 BaseConstraintDetector,
 BaseConstraintDiscoverer)
from tdda.rexpy import rexpy

class MyExtension(ExtensionBase):
 def applicable(self):
 ...

 def help(self, stream=sys.stdout):
 print('...', file=stream)

 def spec(self):
 return '...'

 def discover(self):
 parser = discover_parser()
 parser.add_argument(...)
 params = {}
 flags = discover_flags(parser, self.argv[1:], params)
 data = ... get data source from flags ...
 discoverer = MyConstraintDiscoverer(data, **params)
 constraints = discoverer.discover()
 results = constraints.to_json()
 ... write constraints JSON to output file
 return results

 def verify(self):
 parser = verify_parser()
 parser.add_argument(...)
 params = {}
 flags = verify_flags(parser, self.argv[1:], params)
 data = ... get data source from flags ...
 verifier = MyConstraintVerifier(data, **params)
 constraints = DatasetConstraints(loadpath=...)
 results = verifier.verify(constraints)
 return results

 def detect(self):
 parser = detect_parser()
 parser.add_argument(...)
 params = {}
 flags = detect_flags(parser, self.argv[1:], params)
 data = ... get data source from flags ...
 detector = MyConstraintDetector(data, **params)
 constraints = DatasetConstraints(loadpath=...)
 results = detector.detect(constraints)
 return results

Extension API

	
class tdda.constraints.extension.BaseConstraintCalculator

	The BaseConstraintCalculator class defines a default or dummy
implementation of all of the methods that are required in order
to implement a constraint discoverer or verifier via subclasses of the
base BaseConstraintDiscoverer and BaseConstraintVerifier
classes.

	
allowed_values_exclusions()

	Get list of values to ignore when computing allowed values

	
calc_all_non_nulls_boolean(colname)

	Checks whether all the non-null values in a column are boolean.
Returns True of they are, and False otherwise.

This is only required for implementations where a dataset column
may contain values of mixed type.

	
calc_max(colname)

	Calculates the maximum (non-null) value in the named column.

	
calc_max_length(colname)

	Calculates the length of the longest string(s) in the named column.

	
calc_min(colname)

	Calculates the minimum (non-null) value in the named column.

	
calc_min_length(colname)

	Calculates the length of the shortest string(s) in the named column.

	
calc_non_integer_values_count(colname)

	Calculates the number of unique non-integer values in a column

This is only required for implementations where a dataset column
may contain values of mixed type.

	
calc_non_null_count(colname)

	Calculates the number of nulls in a column

	
calc_null_count(colname)

	Calculates the number of nulls in a column

	
calc_nunique(colname)

	Calculates the number of unique non-null values in a column

	
calc_rex_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies a given regular
expression constraint (by matching at least one of the regular
expressions given).

Returns a ‘truthy’ value (typically the set of the strings that do
not match any of the regular expressions) on failure, and a ‘falsy’
value (typically False or None or an empty set) if there are no
failures. Any contents of the returned value are used in the case
where detect is set, by the corresponding extension method for
recording detection results.

	
calc_tdda_type(colname)

	Calculates the TDDA type of a column

	
calc_unique_values(colname, include_nulls=True)

	Calculates the set of unique values (including or excluding nulls)
in a column

	
column_exists(colname)

	Returns whether this column exists in the dataset

	
find_rexes(colname, values=None)

	Generate a list of regular expressions that cover all of
the patterns found in the (string) column.

	
get_column_names()

	Returns a list containing the names of all the columns

	
get_nrecords()

	Return total number of records

	
is_null(value)

	Determine whether a value is null

	
to_datetime(value)

	Convert a value to a datetime

	
types_compatible(x, y, colname)

	Determine whether the types of two values are compatible

	
class tdda.constraints.extension.BaseConstraintDetector

	The BaseConstraintDetector class defines a default or dummy
implementation of all of the methods that are required in order
to implement constraint detection via the a subclass of the base
BaseConstraintVerifier class.

	
detect_allowed_values_constraint(colname, value, violations)

	Detect failures for an allowed_values constraint.

	
detect_max_constraint(colname, value, precision, epsilon)

	Detect failures for a max constraint.

	
detect_max_length_constraint(colname, value)

	Detect failures for a max_length constraint.

	
detect_max_nulls_constraint(colname, value)

	Detect failures for a max_nulls constraint.

	
detect_min_constraint(colname, value, precision, epsilon)

	Detect failures for a min constraint.

	
detect_min_length_constraint(colname, value)

	Detect failures for a min_length constraint.

	
detect_no_duplicates_constraint(colname, value)

	Detect failures for a no_duplicates constraint.

	
detect_rex_constraint(colname, value, violations)

	Detect failures for a rex constraint.

	
detect_sign_constraint(colname, value)

	Detect failures for a sign constraint.

	
detect_tdda_type_constraint(colname, value)

	Detect failures for a type constraint.

	
write_detected_records(detect_outpath=None, detect_write_all=False, detect_per_constraint=False, detect_output_fields=None, detect_index=False, detect_in_place=False, rownumber_is_index=True, boolean_ints=False, **kwargs)

	Write out a detection dataset.

Returns a :py:class:~tdda.constraints.base.Detection object
(or None).

	
class tdda.constraints.extension.ExtensionBase(argv, verbose=False)

	An extension must provide a class that is based on the
ExtensionBase class, providing implementations for its
applicable(), help(), discover() and
verify() methods.

	
applicable()

	The applicable() method should return True if the
argv property contains command-line parameters that
can be used by this implementation.

For example, if the extension can handle data stored in Excel
.xlsx files, then its applicable() method should
return True if any of its parameters are filenames that have
a .xlsx suffix.

	
detect()

	The detect() method should implement constraint
detection.

It should read constraints from a .tdda file specified on
the command line, and verify these constraints on the data
specified, and produce detection output.

It should use the self.argv variable to get whatever other
optional or mandatory flags or parameters are required to specify
the data on which the constraints are to be verified, where the
output detection data should be written, and detection-specific
flags.

	
discover()

	The discover() method should implement constraint
discovery.

It should use the self.argv variable to get whatever other
optional or mandatory flags or parameters are required to specify
the data from which constraints are to be discovered, and the name
of the file to which the constraints are to be written.

	
help(self, stream=sys.stdout)

	The help() method should document itself by writing
lines to the given output stream.

This is used by the tdda command’s help option.

	
spec()

	The spec() method should return a short one-line string
describing, briefly, how to specify the input source.

	
verify()

	The verify() method should implement constraint
verification.

It should read constraints from a .tdda file specified on
the command line, and verify these constraints on the data
specified.

It should use the self.argv variable to get whatever other
optional or mandatory flags or parameters are required to specify
the data on which the constraints are to be verified.

Constraints API

TDDA constraint discovery and verification, common underlying functionality.

	
class tdda.constraints.baseconstraints.BaseConstraintDiscoverer(inc_rex=False, seed=None, **kwargs)

	The BaseConstraintDiscoverer class provides a generic
framework for discovering constraints.

A concrete implementation of this class is constructed by creating
a mix-in subclass which inherits both from BaseConstraintDiscover
and from a specific implementation of BaseConstraintCalculator.

	
class tdda.constraints.baseconstraints.BaseConstraintVerifier(epsilon=None, type_checking=None, **kwargs)

	The BaseConstraintVerifier class provides a generic
framework for verifying constraints.

A concrete implementation of this class is constructed by creating
a mix-in subclass which inherits both from BaseConstraintVerifier
and from specific implementations of BaseConstraintCalculator
and BaseConstraintDetector.

	
cache_values(colname)

	Returns the dictionary for colname from the cache, first creating
it if there isn’t one on entry.

	
detect(constraints, VerificationClass=<class 'tdda.constraints.base.Verification'>, outpath=None, write_all=False, per_constraint=False, output_fields=None, index=False, in_place=False, rownumber_is_index=True, boolean_ints=False, **kwargs)

	Apply verifiers to a set of constraints, for detection.

Note that if there is a constraint for a field that does not exist,
then it fails verification, but there are no records to detect
against. Similarly if the field exists but the dataset has no
records.

	
get_all_non_nulls_boolean(colname)

	Looks up or caches the number of non-integer values in a real column,
or calculates and caches it.

	
get_cached_value(value, colname, f)

	Return cached value of colname, calculating it and caching it
first, if it is not already there.

	
get_max(colname)

	Looks up cached maximum of column, or calculates and caches it

	
get_max_length(colname)

	Looks up cached maximum string length in column,
or calculates and caches it

	
get_min(colname)

	Looks up cached minimum of column, or calculates and caches it

	
get_min_length(colname)

	Looks up cached minimum string length in column,
or calculates and caches it

	
get_non_integer_values_count(colname)

	Looks up or caches the number of non-integer values in a real column,
or calculates and caches it.

	
get_non_null_count(colname)

	Looks up or caches the number of non-null values in a column,
or calculates and caches it

	
get_null_count(colname)

	Looks up or caches the number of nulls in a column,
or calculates and caches it

	
get_nunique(colname)

	Looks up or caches the number of unique (distinct) values in a column,
or calculates and caches it.

	
get_tdda_type(colname)

	Looks up cached tdda type of a column,
or calculates and caches it

	
get_unique_values(colname)

	Looks up or caches the list of unique (distinct) values in a column,
or calculates and caches it.

	
verifiers()

	Returns a dictionary mapping constraint types to their callable
(bound) verification methods.

	
verify(constraints, VerificationClass=<class 'tdda.constraints.base.Verification'>, **kwargs)

	Apply verifiers to a set of constraints, for reporting

	
verify_allowed_values_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the constraint on allowed
(string) values provided.

	
verify_max_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the maximum value
constraint specified.

	
verify_max_length_constraint(colname, constraint, detect=False)

	Verify whether a given (string) column satisfies the maximum length
constraint specified.

	
verify_max_nulls_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the supplied constraint
that it should contain no nulls.

	
verify_min_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the minimum value
constraint specified.

	
verify_min_length_constraint(colname, constraint, detect=False)

	Verify whether a given (string) column satisfies the minimum length
constraint specified.

	
verify_no_duplicates_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the constraint supplied,
that it should contain no duplicate (non-null) values.

	
verify_rex_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies a given regular
expression constraint (by matching at least one of the regular
expressions given).

	
verify_sign_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the supplied sign constraint.

	
verify_tdda_type_constraint(colname, constraint, detect=False)

	Verify whether a given column satisfies the supplied type constraint.

Underlying API Classes

Classes for representing individual constraints.

	
class tdda.constraints.base.DatasetConstraints(per_field_constraints=None, loadpath=None)

	Container for constraints pertaining to a dataset.
Currently only supports per-field constraints.

	
initialize_from_dict(in_constraints)

	Initializes this object from a dictionary in_constraints.
Currently, the only key used from in_constraints is fields.

The value of in_constraints[‘fields’] is expected to be
a dictionary, keyed on field name, whose values are the
constraints for that field.

They constraints are keyed on the kind of constraint, and should
contain either a single value (a scalar or a list), or a dictionary
of keyword arguments for the constraint initializer.

	
load(path)

	Builds a DatasetConstraints object from a json file

	
sort_fields(fields=None)

	Sorts the field constraints within the object by field order,
by default by alphabetical order.

If a list of field names is provided, then the fields will appear
in that given order (with any additional fields appended at the end).

	
to_dict(tddafile=None)

	Converts the constraints in this object to a dictionary.

	
to_json(tddafile=None)

	Converts the constraints in this object to JSON.
The resulting JSON is returned.

	
class tdda.constraints.base.FieldConstraints(name=None, constraints=None)

	Container for constraints on a field.

	
to_dict_value(raw=False)

	Returns a pair consisting of the name supplied, or the stored name,
and an ordered dictionary keyed on constraint kind with the value
specifying the constraint. For simple constraints, the value is a
base type; for more complex constraints with several components,
the value will itself be an (ordered) dictionary.

The ordering is all to make the JSON file get written in a sensible
order, rather than being a jumbled mess.

	
class tdda.constraints.base.MultiFieldConstraints(names=None, constraints=None)

	Container for constraints on a pairs (or higher numbers) of fields

	
to_dict_value()

	
	Returns a pair consisting of

	
	a comma-separated list of the field names

	an ordered dictionary keyed on constraint kind with the value
specifying the constraint.

For simple constraints, the value is a
base type; for more complex Constraints with several components,
the value will itself be an (ordered) dictionary.

The ordering is all to make the JSON file get written in a sensible
order, rather than being a jumbled mess.

	
class tdda.constraints.base.Constraint(kind, value, **kwargs)

	Base container for a single constraint.
All specific constraint types (should) subclass this.

	
check_validity(name, value, *valids)

	Check that the value of a constraint is allowed. If it isn’t,
then the TDDA file is not valid.

	
class tdda.constraints.base.MinConstraint(value, precision=None, comment=None)

	Constraint specifying the minimum allowed value in a field.

	
class tdda.constraints.base.MaxConstraint(value, precision=None, comment=None)

	Constraint specifying the maximum allowed value in a field.

	
class tdda.constraints.base.SignConstraint(value, comment=None)

	Constraint specifying allowed sign of values in a field.
Used only for numeric fields (real, int, bool), and normally
used in addition to Min and Max constraints.

Possible values are positive, non-negative, zero,
non-positive, negative and null.

	
class tdda.constraints.base.TypeConstraint(value, comment=None)

	Constraint specifying the allowed (TDDA) type of a field.
This can be a single value, chosen from:

	bool

	int

	real

	string

	date

or a list of such values, most commonly ['int', 'real'],
sometimes used because of Pandas silent and automatic promotion
of integer fields to floats if nulls are present.)

	
class tdda.constraints.base.MaxNullsConstraint(value, comment=None)

	Constraint on the maximum number of nulls allowed in a field.
Usually 0 or 1.
(The constraint generator only generates 0 and 1, but the verifier
will verify and number.)

	
class tdda.constraints.base.NoDuplicatesConstraint(value=True, comment=None)

	Constraint specifying that non dupicate non-null values are allowed
in a field.

Currently only generated for string fields, though could be used
more broadly.

	
class tdda.constraints.base.AllowedValuesConstraint(value, comment=None)

	Constraint restricting the allowed values in a field to an explicity list.

Currently only used for string fields.

When generating constraints, this code will only generate such a
constraint if there are no more than MAX_CATEGORIES (= 20 at the
time of writing, but check above in case this comment rusts)
different values in the field.

	
class tdda.constraints.base.MinLengthConstraint(value)

	Constraint restricting the minimum length of strings in a string field.

Generated instead of a MinConstraint by this generation code,
but can be used in conjunction with a MinConstraint.

	
class tdda.constraints.base.MaxLengthConstraint(value, comment=None)

	Constraint restricting the maximum length of strings in a string field.

Generated instead of a MaxConstraint by this generation code,
but can be used in conjunction with a MinConstraint.

	
class tdda.constraints.base.LtConstraint(value)

	Constraint specifying that the first field of a pair should be
(strictly) less than the second, where both are non-null.

	
class tdda.constraints.base.LteConstraint(value)

	Constraint specifying that the first field of a pair should be
no greater than the second, where both are non-null.

	
class tdda.constraints.base.EqConstraint(value)

	Constraint specifying that two fields should have identical values
where they are both non-null.

	
class tdda.constraints.base.GtConstraint(value)

	Constraint specifying that the first field of a pair should be
(strictly) greater than the second, where both are non-null.

	
class tdda.constraints.base.GteConstraint(value)

	Constraint specifying that the first field of a pair should be
greater than or equal to the second, where both are non-null.

	
class tdda.constraints.base.RexConstraint(value, comment=None)

	Constraint restricting a string field to match (at least) one of
the regular expressions in a list given.

	
class tdda.constraints.base.Verification(constraints, report='all', ascii=False, detect=False, detect_outpath=None, detect_write_all=False, detect_per_constraint=False, detect_output_fields=None, detect_index=False, detect_in_place=False, **kwargs)

	Container for the result of a constraint verification for a dataset
in the context of a given set of constraints.

TDDA’s API for Rexpy

tdda.rexpy

Python API

The tdda.rexpy.rexpy module provides a Python API, to allow
discovery of regular expressions to be incorporated into other Python
programs.

	
class tdda.rexpy.rexpy.Coverage

	Container for coverage information.

Attributes:

	n: number of matches

	n_unique: number matches, deduplicating strings

	incr: number of new (unique) matches for this regex

	incr_uniq: number of new (unique) deduplicated matches
for this regex

	index: index of this regex in original list returned.

	
class tdda.rexpy.rexpy.Extractor(examples, extract=True, tag=False, extra_letters=None, full_escape=False, remove_empties=False, strip=False, variableLengthFrags=False, specialize=False, max_patterns=None, min_diff_strings_per_pattern=1, min_strings_per_pattern=1, size=None, seed=None, dialect='portable', verbose=0)

	Regular expression ‘extractor’.

Given a set of examples, this tries to construct a useful
regular expression that characterizes them; failing which,
a list of regular expressions that collectively cover the cases.

Results are stored in self.results once extraction has occurred,
which happens by default on initialization, but can be invoked
manually.

The examples may be given as a list of strings, a integer-valued,
string-keyed dictionary or a function.

	If it’s a list, each string in the list is an example string

	It it’s a dictionary (or counter), each string is to be
used, and the values are taken as frequencies (should be non-negative)

	If it’s a function, it should be as specified below
(see the definition of example_check_function)

	size can be provided as:

	
	a Size() instance, to control various sizes within rexpy

	None (the default), in which case rexpy’s defaults are used

	False or 0, which means don’t use sampling

Verbose is usually 0 or False. It can be to True or 1 for various
extra output, and to higher numbers for even more verbose output.
The highest level currently used is 2.

	
aligned_parts(parts)

	Given a list of parts, each consisting of the fragments from a set
of partially aligned patterns, show them aligned, and in a somewhat
ambigous, numbered, fairly human-readable, compact form.

	
analyse_fragments(vrle, v_id)

	Analyse the contents of each fragment in vrle across the
examples it matches.

Return zip of

	the characters in each fragment

	the strings in each fragment

	the run-length encoded fine classes in each fragment

	the run-length encoded characters in each fragment

	the fragment itself

all indexed on the (zero-based) group number.

	
batch_extract()

	Find regular expressions for a batch of examples (as given).

	
build_tree_inner(vrles, fulls=None)

	Turn the VRLEs into a tree based on the different initial fragments.

	
check_for_failures(rexes, maxExamples)

	This method is the default check_fn
(See the definition of example_check_function below.)

	
clean(examples)

	Compute length of each string and count number of examples
of each length.

	
coarse_classify(s)

	Classify each character in a string into one of the coarse categories

	
coarse_classify_char(c)

	Classify character into one of the coarse categories

	
coverage(dedup=False)

	Get a list of frequencies for each regular expression,
i.e the number of the (stripped) input strings it matches.
The list is in the same order as the regular expressions
in self.results.rex.

If dedup is set to True, shows only the number of distinct
(stripped) input examples matches

	
extract()

	Actually perform the regular expression ‘extraction’.

	
find_bad_patterns(freqs)

	Given freqs, a list of frequencies (for the corresponding indexed RE)
identify indexes to patterns that:

	have too few strings

	cause too many patterns to be returned

NOTE: min_diff_strings_per_pattern is currently ignored.

Returns set of indices for deletion

	
find_frag_sep_frag_repeated(tree, existing=None, results=None)

	This specifically looks for patterns in the tree constructed
by self.build_tree of the general form

A
ABA
ABABA

etc., where A and B are both fragments.
A common example is that A is recognizably a pattern and B is
recognizably a separator. So, for example:

HM
MH-RT
QY-TR-BF
QK-YT-IU-QP

all fit

[A-Z]{2}(-[A-Z])*

which, as fragments, would be A = (C, 2, 2) and B = (‘.’, 1, 1).

The tree is currently not recording or taking account of
frequency in the fragments. We might want to do that.
Or we might leave that as a job for whatever is going to
consolidate the different branches of the tree that match
the repeating patterns returned.

	
find_non_matches(rexes)

	Returns all example strings that do not match any of the regular
expressions in results, together with their frequencies.

	
fine_class(c)

	Map a character in coarse class ‘C’ (AlphaNumeric) to a fine class.

	
fragment2re(fragment, tagged=False, as_re=True, output=False)

	Convert fragment to RE.

If output is set, this is for final output, and should be in the
specified dialect (if any).

	
full_incremental_coverage(dedup=False, debug=False)

	Returns an ordered dictionary of regular expressions,
sorted by the number of new examples they match/explain,
from most to fewest, with ties broken by pattern sort order.
The values in the results dictionary are the numbers of (new)
examples matched.

If dedup is set to True, frequencies are ignored in
the sort order.

Each result is a Coverage object with the following attributes:

	n:

	number of examples matched including duplicates

	n_uniq:

	number of examples matched, excluding duplicates

	incr:

	number of previously unmatched examples matched,
including duplicates

	incr_uniq:

	number of previously unmatched examples matched,
excluding duplicates

	
incremental_coverage(dedup=False, debug=False)

	Returns an ordered dictionary of regular expressions,
sorted by the number of new examples they match/explain,
from most to fewest, with ties broken by pattern sort order.
The values in the results dictionary are the numbers of (new)
examples matched.

If dedup is set to True, frequencies are ignored.

	
merge_fixed_omnipresent_at_pos(patterns)

	Find unusual columns in fixed positions relative to ends.
Align those, split and recurse

	
merge_fixed_only_present_at_pos(patterns)

	Find unusual columns in fixed positions relative to ends.
Align those
Split and recurse

	
n_examples(dedup=False)

	Returns the total number of examples used by rexpy.
If dedup is set to True, this the number of different examples,
otherwise it is the “raw” number of examples.
In all cases, examples have been stripped.

	
refine_fragments(vrle, v_id)

	Refine the categories for variable-run-length-encoded pattern (vrle)
provided by narrowing the characters in each fragment.

	
rle2re(rles, tagged=False, as_re=True)

	Convert run-length-encoded code string to regular expression

	
rle_fc_c(s, pattern, rlefc_in, rlec_in)

	
	Convert a string, matching a ‘C’-(fragment) pattern, to

	
	a run-length encoded sequence of fine classes

	a run-length encoded sequence of characters

	Given inputs:

	
	s — a string representing the actual substring of an

	example that matches a pattern fragment described
by pattern

pattern — a VRLE of coarse classes

rlefc_in — a VRLE of fine classes, or None, or False

rlec_in — a VRLE of characters, or None, or False

Returns new rlefc and rlec, each of which is:

False, if the string doesn’t match the corresponding
input VRLE

a possibly expanded VRLE, if it does match, or would match
if expanded (by allowing more of fewer repetitions).

	
run_length_encode_coarse_classes(s)

	Returns run-length encoded coarse classification

	
sample(n)

	Sample self.all_examples for potentially faster induction.

	
sample_examples(examples, n)

	Sample examples provided for potentially faster induction.

	
specialize(patterns)

	Check all the catpure groups in each patterns and simplify any
that are sufficiently low frequency.

	
vrle2re(vrles, tagged=False, as_re=True, output=False)

	Convert variable run-length-encoded code string to regular expression

If output is set, this is for final output, and should be in the
specified dialect (if any).

	
vrle2refrags(vrles, output=False)

	Convert variable run-length-encoded code string to regular expression
and list of fragments

	
class tdda.rexpy.rexpy.Fragment

	Container for a fragment.

Attributes:

	re: the regular expression for the fragment

	group: True if it forms a capture group (i.e. is not constant)

	
class tdda.rexpy.rexpy.IDCounter

	Rather Like a counter, but also assigns a numeric ID (from 1) to each key
and actually builds the counter on that.

Use .add to increment an existing key’s count, or to initialize it to
(by default) 1.

Get the key’s ID with .ids[key] or .keys.get(key).

	
add(key, freq=1)

	Adds the given key, counting it and ensuring it has an id.

Returns the id.

	
getitem(key)

	Gets the count for the key

	
class tdda.rexpy.rexpy.PRNGState(n)

	Seeds the Python PRNG and after captures its state.

restore() cam be used to set them back to the captured state.

	
tdda.rexpy.rexpy.capture_group(s)

	Places parentheses around s to form a capure group (a tagged piece of
a regular expression), unless it is already a capture group.

	
tdda.rexpy.rexpy.cre(rex)

	Compiled regular expression
Memoized implementation.

	
tdda.rexpy.rexpy.escaped_bracket(chars, dialect=None, inner=False)

	Construct a regular expression Bracket (character class),
obeying the special regex rules for escaping these:

	Characters do not, in general need to be escaped

	If there is a close bracket (“]”) it mst be the first character

	If there is a hyphen (“-”) it must be the last character

	If there is a carat (“^”), it must not be the first character

	If there is a backslash, it’s probably best to escape it.
Some implementations don’t require this, but it will rarely
do any harm, and most implementation understand at least some
escape sequences (“w”, “W”, “d”, “s” etc.), so escaping
seems prudent.

However, javascript and ruby do not follow the unescaped “]” as the
first character rule, so if either of these dialects is specified,
the “]” will be escaped (but still placed in the first position.

If inner is set to True, the result is returned without brackets.

	
tdda.rexpy.rexpy.example_check_function(rexes, maxN=None)

	CHECK FUNCTIONS
This is an example check function

A check function takes a list of regular expressions (as strings)
and optionally, a maximum number of (different) strings to return.

It should return two things:

	An Examples object (importing that class from rexpy.py)
containing strings that don’t match any of the regular expressions
in the list provided. (If the list is empty, all strings are candidates
to be returned.)

	a list of how many strings matched each regular expression
provided (in the same order).

If maxN is None, it should return all strings that fail to match;
if it is a number, that is the maximum number of (distinct) failures
to return. The function is expected to return all failures, however,
if there are fewer than maxN failures (i.e., it’s not OK if maxN
is 20 to return just 1 failiing string if actually 5 different
strings fail.)

Examples: The examples object is initialized with a list of (distinct)
failing strings, and optionally a corresponding list of their frequencies.
If no frequencies are provided, all frequencies will be set to 1
when the Examples object is initialized.

The regular expression match frequencies are used to eliminate
low-frequency or low-ranked regular expressions. It is not essential
that the values cover all candidate strings; it is enough to give
frequencies for those strings tested before maxN failures are generated.

(Normally, the regular expressions provided will be exclusive, i.e.
at most one will match, so it’s also fine only to test a string
against regular expressions until a match is found…you don’t
need to test against other patterns in case the string also matches
more than one.)

	
tdda.rexpy.rexpy.expand_or_falsify_vrle(rle, vrle, fixed=False, variableLength=False)

	
	Given a run-length encoded sequence

	(e.g. [('A', 3), ('B', 4)])

	and (usually) a variable run-length encoded sequence

	(e.g. [('A', 2, 3), ('B', 1, 2)])

expand the VRLE to include the case of the RLE, if they can be consistent.

If they cannot, return False.

If vrle is None, this indicates it hasn’t been found yet, so rle is
simply expanded to a VRLE.

If vrle is False, this indicates that a counterexample has already
been found, so False is returned again.

If variableLength is set to True, patterns will be merged even if it is
a different length from the vrle, as long as the overlapping part is
consistent.

	
tdda.rexpy.rexpy.extract(examples, tag=False, encoding=None, as_object=False, extra_letters=None, full_escape=False, remove_empties=False, strip=False, variableLengthFrags=False, max_patterns=None, min_diff_strings_per_pattern=1, min_strings_per_pattern=1, size=None, seed=None, dialect='portable', verbose=0)

	Extract regular expression(s) from examples and return them.

Normally, examples should be unicode (i.e. str in Python3,
and unicode in Python2). However, encoded strings can be
passed in provided the encoding is specified.

Results will always be unicode.

If as_object is set, the extractor object is returned,
with results in .results.rex; otherwise, a list of regular
expressions, as unicode strings is returned.

	
tdda.rexpy.rexpy.get_omnipresent_at_pos(fragFreqCounters, n, **kwargs)

	Find patterns in fragFreqCounters for which the frequency is n.

fragFreqCounters is a dictionary (usually keyed on ‘fragments’)
of whose values are dictionaries mapping positions to frequencies.

For example:

{
 ('a', 1, 1, 'fixed'): {1: 7, -1: 7, 3: 4},
 ('b', 1, 1, 'fixed'): {2: 6, 3: 4},
}

This indicates that the pattern ('a', 1, 1, 'fixed') has frequency
7 at positions 1 and -1, and frequency 4 at position 3, while
pattern ('b', 1, 1, 'fixed') has frequency 6 at position 2 and
4 at position 3.

With n set to 7, this returns:

[
 (('a', 1, 1, 'fixed'), -1)
 (('a', 1, 1, 'fixed'), 1),
]

(sorted on pos; each pos really should occur at most once.)

	
tdda.rexpy.rexpy.get_only_present_at_pos(fragFreqCounters, *args, **kwargs)

	Find patterns in fragFreqCounters that, when present, are always
at the same position.

fragFreqCounters is a dictionary (usually keyed on fragments)
of whose values are dictionaries mapping positions to frequencies.

For example:

{
 ('a', 1, 1, 'fixed'): {1: 7, -1: 7, 3: 4},
 ('b', 1, 1, 'fixed'): {2: 6},
}

	This indicates that the

	
	pattern ('a', 1, 1, 'fixed') has frequency 7 at positions 1 and -1,
and frequency 4 at position 3;

	pattern ('b', 1, 1, 'fixed') has frequency 6 at position 2 (only)

So this would return:

[
 (('b', 1, 1, 'fixed'), 2)
]

(sorted on pos; each pos really should occur at most once.)

	
tdda.rexpy.rexpy.left_parts(patterns, fixed)

	patterns is a list of patterns each consisting of a list of frags.

fixed is a list of (fragment, position) pairs, sorted on position,
specifying points at which to split the patterns.

This function returns a list of lists of pattern fragments,
split at each fixed position.

	
tdda.rexpy.rexpy.length_stats(patterns)

	Given a list of patterns, returns named tuple containing

	all_same_length:

	boolean, True if all patterns are the same length

	max_length:

	length of the longest pattern in patterns

	
tdda.rexpy.rexpy.matrices2incremental_coverage(patterns, matrix, deduped, indexes, examples, sort_on_deduped=False)

	Find patterns, in (descending) order of # of matches, and pull out freqs.

Then set overlapping matches to zero and repeat.

Returns ordered dict, sorted by incremental match rate,
with number of (previously unaccounted for) strings matched.

	
tdda.rexpy.rexpy.nvl(v, w)

	This function is used as syntactic sugar for replacing null values.

	
tdda.rexpy.rexpy.pdextract(cols, seed=None)

	Extract regular expression(s) from the Pandas column (Series) object
or list of Pandas columns given.

All columns provided should be string columns (i.e. of type np.dtype(‘O’),
possibly including null values, which will be ignored.

Example use:

import numpy as np
import pandas as pd
from tdda.rexpy import pdextract

df = pd.DataFrame({'a3': ["one", "two", np.NaN],
 'a45': ['three', 'four', 'five']})

re3 = pdextract(df['a3'])
re45 = pdextract(df['a45'])
re345 = pdextract([df['a3'], df['a45']])

This should result in:

re3 = '^[a-z]{3}$'
re5 = '^[a-z]{3}$'
re345 = '^[a-z]{3}$'

	
tdda.rexpy.rexpy.rex_coverage(patterns, examples, dedup=False)

	Given a list of regular expressions and a dictionary of examples
and their frequencies, this counts the number of times each pattern
matches a an example.

If dedup is set to True, the frequencies are ignored, so that only
the number of keys is returned.

	
tdda.rexpy.rexpy.rex_full_incremental_coverage(patterns, examples, sort_on_deduped=False, debug=False)

	Returns an ordered dictionary containing, keyed on terminated
regular expressions, from patterns, sorted in decreasing order
of incremental coverage, i.e. with the pattern matching
the most first, followed by the one matching the most remaining
examples etc.

If dedup is set to True, the ordering ignores duplicate examples;
otherise, duplicates help determine the sort order.

Each entry in the dictionary returned is a Coverage object
with the following attributes:

	n:

	number of examples matched including duplicatesb

	n_uniq:

	number of examples matched, excluding duplicates

	incr:

	number of previously unmatched examples matched,
including duplicates

	incr_uniq:

	number of previously unmatched examples matched,
excluding duplicates

	
tdda.rexpy.rexpy.rex_incremental_coverage(patterns, examples, sort_on_deduped=False, debug=False)

	Given a list of regular expressions and a dictionary of examples
and their frequencies, this computes their incremental coverage,
i.e. it produces an ordered dictionary, sorted from the “most useful”
patterns (the one that matches the most examples) to the least useful.
Usefulness is defined as “matching the most previously unmatched patterns”.
The dictionary entries are the number of (new) matches for the pattern.

If dedup is set to True, the frequencies are ignored when computing
match rate; if set to false, patterns get credit for the nmultiplicity
of examples they match.

Ties are broken by lexical order of the (terminated) patterns.

For example, given patterns p1, p2, and p3, and examples e1, e2 and e3,
with a match profile as follows (where the numbers are multiplicities)

	example

	p1

	p2

	p3

	e1

	2

	2

	0

	e2

	0

	3

	3

	e3

	1

	0

	0

	e4

	0

	0

	4

	e5

	1

	0

	1

	TOTAL

	4

	4

	8

If dedup is False this would produce:

OrderedDict(
 (p3, 8),
 (p1, 3),
 (p2, 0)
)

because:

	p3 matches the most, with 8

	Of the strings unmatched by p3, p1 accounts for 3 (e1 x 2 and e3 x 1)
whereas p2 accounts for no new strings.

With dedup set to True, the matrix transforms to

	example

	p1

	p2

	p3

	e1

	1

	1

	0

	e2

	0

	1

	1

	e3

	1

	0

	0

	e4

	0

	0

	1

	e5

	1

	0

	1

	TOTAL

	3

	2

	3

So p1 and p3 are tied.

If we assume the p1 sorts before p3, the result would then be:

OrderedDict(
 (p1, 3),
 (p3, 2),
 (p2, 0)
)

	
tdda.rexpy.rexpy.rexpy_streams(in_path=None, out_path=None, skip_header=False, quote=False, **kwargs)

	
	in_path is

	None: to read inputs from stdin
path to file: to read inputs from file at in_path
list of strings: to use those strings as the inputs

	out_path is:

	None: to write outputs to stdout
path to file: to write outputs from file at out_path
False: to return the strings as a list

	
tdda.rexpy.rexpy.right_parts(patterns, fixed)

	patterns is a list of patterns each consisting of a list of frags.

fixed is a list of (fragment, pos) pairs where position specifies
the position from the right, i.e a position that can be indexed as
-position.

Fixed should be sorted, increasing on position, i.e.
sorted from the right-most pattern.
The positions specify points at which to split the patterns.

This function returns a list of lists of pattern fragments,
split at each fixed position.

	
tdda.rexpy.rexpy.run_length_encode(s)

	Return run-length-encoding of string s, e.g.:

'CCC-BB-A' --> (('C', 3), ('-', 1), ('B', 2), ('-', 1), ('A', 1))

	
tdda.rexpy.rexpy.signature(rle)

	Return the sequence of characters in a run-length encoding
(i.e. the signature).

Also works with variable run-length encodings

	
tdda.rexpy.rexpy.terminate_patterns_and_sort(patterns)

	Given a list of regular expressions, this terminates any that are
not and returns them in sorted order.
Also returns a list of the original indexes of the results.

	
tdda.rexpy.rexpy.to_vrles(rles)

	Convert a list of run-length encodings to a list of variable run-length
encodings, one for each common signature.

For example, given inputs of:

 (('C', 2),)
 (('C', 3),)
and (('C', 2), ('.', 1))

this would return:

 (('C', 2, 3),)
and (('C', 2, 2), ('.', 1, 1))

Microsoft Windows Configuration

The TDDA library makes use of some non-ASCII characters in its output.
In order for these to be displayed correctly on Windows systems, a suitable
font must be used.

Fonts that are known to support these characters on Windows include:

	NSimSun

	MS Gothic

	SimSun-ExtB

Fonts that are known not to support these characters on Windows include:

	Consolas

	Courier New

	Lucida Console

	Lucida Sans Typewriter

The font for a Command Prompt window can be set through the window’s
Properties.

Alternatively, the --ascii flag can be used when using verify or
detect functionality.

Tests

The TDDA package includes a set of unit-tests, for testing that the package
is correctly installed and configured, and does not include any regressions.

To run these tests:

tdda test

The output should look something like:

...s....
.........................s........................
--
Ran 120 tests in 1.849s

OK (skipped=2)

Some tests may be skipped, if they depend on modules that are not installed
in your local environment (for instance, for testing TDDA database
functionality for databases for which you do not have drivers installed).

The overall test status should always be OK.

Examples

The TDDA package includes embedded examples of code and data.
To copy these examples, run:

tdda examples

which will create a number of subdirectories of the current directory,
currently:

	constraints_examples

	rexpy_examples

	referencetest_examples

	gentest_examples

Recent Changes

This Version

	2.0 Addition of Gentest—functionality for automatically
generating Python test code for any command-line program

	2.0 Major overhaul of documentation.

	More descriptive documentation

	Better (though incomplete) separation between user code
(particularly the command-line utilities tdda gentest,
tdda discover, tdda verify, tdda detect and rexpy).

	Add more external links to resources and fix those that
had rusted

	Improve the CSS to make the documentation render better
on tdda.readthedocs.io [https://tdda.readthedocs.io]

	Adopt a customized version of the readthedocs theme
for the documentation everywhere, so that what you see
if you build the documentation locally should be more
similar to what you see at
tdda.readthedocs.io [https://tdda.readthedocs.io]

	2.0 Significant changes to the algorithm used by Rexpy.
Should now be faster, but potentially more stochastic.

	2.0 Rexpy can now generate many different flavours
of regular expressions.

	2.0. Planned Deprecation
We plan to move from using .feather files to .parquet files
in the 2.1 release, ad which point .feather files will immediately
be deprecated.

Older Versions

	Reference test exercises added.

	Escaping of special characters for regular expressions is now done
in a way that is uniform across Python2, Python pre-3.7, and Python 3.7+.

	JSON is now generated the same for Python2 and PYthon3 (no blank lines at
the end of lines, and UTF8-encoded).

	Fixed issue with tdda test command not working properly in the
previous version, to self-test an installation.

	Added new option flag --interleave for tdda detect.
This causes the _ok detection fields to be interleaved with the original
fields that they refer to in the resulting detection dataset, rather than
all appearing together at the far right hand side. This option was actually
present in the previous release, but not sufficiently documented.

	Fix for the --write-all parameter for tdda.referencetest
result regeneration, which had regressed slightly in the previous version.

	Improved reporting of differences for text files in
tdda.referencetest when the actual results do not match the
expected file contents.
Now fully takes account of the ignore and remove parameters.

	The ignore_patterns parameter in
assertTextFileCorrect() (and others)
in tdda.referencetest now causes only the portion of a line that
matches the regular expressions to be ignored; anything else on the line
(before or after the part that matches a regular expression) must be
identical in the actual and expected results.
This means that you are specifying the part of the line that is allowed to
differ, rather than marking an entire line to be ignored.
This is a change in functionality, but is what had always been intended.
For fuller control (and to get the previous behaviour),
you can anchor the expressions with ^.*(...).*$, and then they
will apply to the entire line.

	The ignore_patterns parameter in tdda.referencetest can now
accept grouped subexpressions in regular expressions. This allows use of
alternations, which were previously not supported.

	The ignore_substrings parameter in
assertTextFileCorrect() (and others)
tdda.referencetest now only matches lines in the expected
file (where you have full control over what will appear there), not in
the actual file.
This fixes a problem with differences being masked (and not reported as
problems) if the actual happened to include unexpected matching content
on lines other than where intended.

	The tdda.constraints package is now more resilient against
unexpected type mismatches. Previously, if the type didn’t match, then
in some circumstances exceptions would be (incorrectly) raised for other
constraints, rather than failures.

	The tdda.constraints package now supports Python datetime.date
fields in Pandas DataFrames, in addition to the existing support of
datetime.datetime.

	The tdda.constraints Python API now provides support for in-memory
constraints, by allowing Python dictionaries to be passed in to
verify_df() and
detect_df(),
as an alternative to passing in a .tdda filename.
This allows an application using the library to store its constraints
however it wants to, rather than having to use the filesystem
(e.g. storing it online and fetching with an HTTP GET).

	The tdda.constraints package can now access MySQL databases using
the mysql.connector [https://pypi.org/project/mysql-connector-python]
driver, in addition to the
MySQLdb [https://pypi.org/project/MySQL-python] and
mysqlclient [https://pypi.org/project/mysqlclient] drivers.

	The tdda.rexpy tool can now quote the regular expressions it
produces, with the new --quote option flag. This makes it easier to
copy the expressions to use them on the command line, or embed them in
strings in many programming languages.

	The Python API now allows you to import tdda and then refer to its
subpackages via tdda.referencetest, tdda.constraints
or tdda.rexpy.
Previously you had to explicitly import each submodule separately.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tdda	

 	
 	
 tdda.constraints	

 	
 	
 tdda.constraints.base	

 	
 	
 tdda.constraints.baseconstraints	

 	
 	
 tdda.constraints.db.constraints	

 	
 	
 tdda.constraints.examples	

 	
 	
 tdda.constraints.extension	

 	
 	
 tdda.referencetest	

 	
 	
 tdda.referencetest.examples	

 	
 	
 tdda.referencetest.referencepytest	

 	
 	
 tdda.referencetest.referencetest	

 	
 	
 tdda.referencetest.referencetestcase	

 	
 	
 tdda.rexpy.examples	

 	
 	
 tdda.rexpy.rexpy	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add() (tdda.rexpy.rexpy.IDCounter method)

 	addoption() (in module tdda.referencetest.referencepytest)

 	aligned_parts() (tdda.rexpy.rexpy.Extractor method)

 	all_fields_except() (tdda.referencetest.referencetest.ReferenceTest method)

 	allowed_values_exclusions() (tdda.constraints.extension.BaseConstraintCalculator method)

 	AllowedValuesConstraint (class in tdda.constraints.base)

 	analyse_fragments() (tdda.rexpy.rexpy.Extractor method)

 	applicable() (tdda.constraints.extension.ExtensionBase method)

 	assertBinaryFileCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	
 	assertCSVFileCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertCSVFilesCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertDataFrameCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertDataFramesEqual() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertFileCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertFilesCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertStringCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertTextFileCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

 	assertTextFilesCorrect() (tdda.referencetest.referencetest.ReferenceTest method)

B

 	
 	BaseConstraintCalculator (class in tdda.constraints.extension)

 	BaseConstraintDetector (class in tdda.constraints.extension)

 	BaseConstraintDiscoverer (class in tdda.constraints.baseconstraints)

 	
 	BaseConstraintVerifier (class in tdda.constraints.baseconstraints)

 	batch_extract() (tdda.rexpy.rexpy.Extractor method)

 	build_tree_inner() (tdda.rexpy.rexpy.Extractor method)

C

 	
 	cache_values() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	calc_all_non_nulls_boolean() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_max() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_max_length() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_min() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_min_length() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_non_integer_values_count() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_non_null_count() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_null_count() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_nunique() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	
 	calc_rex_constraint() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_tdda_type() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	calc_unique_values() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	capture_group() (in module tdda.rexpy.rexpy)

 	check_for_failures() (tdda.rexpy.rexpy.Extractor method)

 	check_validity() (tdda.constraints.base.Constraint method)

 	clean() (tdda.rexpy.rexpy.Extractor method)

 	coarse_classify() (tdda.rexpy.rexpy.Extractor method)

 	coarse_classify_char() (tdda.rexpy.rexpy.Extractor method)

 	column_exists() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	Constraint (class in tdda.constraints.base)

 	Coverage (class in tdda.rexpy.rexpy)

 	coverage() (tdda.rexpy.rexpy.Extractor method)

 	cre() (in module tdda.rexpy.rexpy)

D

 	
 	DatabaseConstraintCalculator (class in tdda.constraints.db.constraints)

 	DatabaseConstraintDiscoverer (class in tdda.constraints.db.constraints)

 	DatabaseConstraintVerifier (class in tdda.constraints.db.constraints)

 	DatabaseVerification (class in tdda.constraints.db.constraints)

 	DatasetConstraints (class in tdda.constraints.base)

 	detect() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	(tdda.constraints.extension.ExtensionBase method)

 	detect_allowed_values_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_db_table() (in module tdda.constraints)

 	detect_max_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	
 	detect_max_length_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_max_nulls_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_min_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_min_length_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_no_duplicates_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_rex_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_sign_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	detect_tdda_type_constraint() (tdda.constraints.extension.BaseConstraintDetector method)

 	discover() (tdda.constraints.extension.ExtensionBase method)

 	discover_db_table() (in module tdda.constraints)

E

 	
 	EqConstraint (class in tdda.constraints.base)

 	escaped_bracket() (in module tdda.rexpy.rexpy)

 	example_check_function() (in module tdda.rexpy.rexpy)

 	expand_or_falsify_vrle() (in module tdda.rexpy.rexpy)

 	
 	ExtensionBase (class in tdda.constraints.extension)

 	extract() (in module tdda.rexpy.rexpy)

 	(tdda.rexpy.rexpy.Extractor method)

 	Extractor (class in tdda.rexpy.rexpy)

F

 	
 	FieldConstraints (class in tdda.constraints.base)

 	find_bad_patterns() (tdda.rexpy.rexpy.Extractor method)

 	find_frag_sep_frag_repeated() (tdda.rexpy.rexpy.Extractor method)

 	find_non_matches() (tdda.rexpy.rexpy.Extractor method)

 	find_rexes() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	
 	fine_class() (tdda.rexpy.rexpy.Extractor method)

 	Fragment (class in tdda.rexpy.rexpy)

 	fragment2re() (tdda.rexpy.rexpy.Extractor method)

 	full_incremental_coverage() (tdda.rexpy.rexpy.Extractor method)

G

 	
 	get_all_non_nulls_boolean() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_cached_value() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_column_names() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	get_max() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_max_length() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_min() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_min_length() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_non_integer_values_count() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_non_null_count() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_nrecords() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	
 	get_null_count() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_nunique() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_omnipresent_at_pos() (in module tdda.rexpy.rexpy)

 	get_only_present_at_pos() (in module tdda.rexpy.rexpy)

 	get_tdda_type() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	get_unique_values() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	getitem() (tdda.rexpy.rexpy.IDCounter method)

 	getTestCaseNames() (tdda.referencetest.referencetestcase.TaggedTestLoader method)

 	GtConstraint (class in tdda.constraints.base)

 	GteConstraint (class in tdda.constraints.base)

H

 	
 	help() (tdda.constraints.extension.ExtensionBase method)

I

 	
 	IDCounter (class in tdda.rexpy.rexpy)

 	incremental_coverage() (tdda.rexpy.rexpy.Extractor method)

 	
 	initialize_from_dict() (tdda.constraints.base.DatasetConstraints method)

 	is_null() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

L

 	
 	left_parts() (in module tdda.rexpy.rexpy)

 	length_stats() (in module tdda.rexpy.rexpy)

 	load() (tdda.constraints.base.DatasetConstraints method)

 	loadTestsFromModule() (tdda.referencetest.referencetestcase.TaggedTestLoader method)

 	
 	loadTestsFromName() (tdda.referencetest.referencetestcase.TaggedTestLoader method)

 	loadTestsFromNames() (tdda.referencetest.referencetestcase.TaggedTestLoader method)

 	loadTestsFromTestCase() (tdda.referencetest.referencetestcase.TaggedTestLoader method)

 	LtConstraint (class in tdda.constraints.base)

 	LteConstraint (class in tdda.constraints.base)

M

 	
 	main() (in module tdda.referencetest.referencetestcase)

 	(tdda.referencetest.referencetestcase.ReferenceTestCase static method)

 	matrices2incremental_coverage() (in module tdda.rexpy.rexpy)

 	MaxConstraint (class in tdda.constraints.base)

 	MaxLengthConstraint (class in tdda.constraints.base)

 	
 	MaxNullsConstraint (class in tdda.constraints.base)

 	merge_fixed_omnipresent_at_pos() (tdda.rexpy.rexpy.Extractor method)

 	merge_fixed_only_present_at_pos() (tdda.rexpy.rexpy.Extractor method)

 	MinConstraint (class in tdda.constraints.base)

 	MinLengthConstraint (class in tdda.constraints.base)

 	MultiFieldConstraints (class in tdda.constraints.base)

N

 	
 	n_examples() (tdda.rexpy.rexpy.Extractor method)

 	
 	NoDuplicatesConstraint (class in tdda.constraints.base)

 	nvl() (in module tdda.rexpy.rexpy)

P

 	
 	pdextract() (in module tdda.rexpy.rexpy)

 	
 	PRNGState (class in tdda.rexpy.rexpy)

R

 	
 	ref() (in module tdda.referencetest.referencepytest)

 	ReferenceTest (class in tdda.referencetest.referencetest)

 	ReferenceTestCase (class in tdda.referencetest.referencetestcase)

 	refine_fragments() (tdda.rexpy.rexpy.Extractor method)

 	rex_coverage() (in module tdda.rexpy.rexpy)

 	rex_full_incremental_coverage() (in module tdda.rexpy.rexpy)

 	rex_incremental_coverage() (in module tdda.rexpy.rexpy)

 	
 	RexConstraint (class in tdda.constraints.base)

 	rexpy_streams() (in module tdda.rexpy.rexpy)

 	right_parts() (in module tdda.rexpy.rexpy)

 	rle2re() (tdda.rexpy.rexpy.Extractor method)

 	rle_fc_c() (tdda.rexpy.rexpy.Extractor method)

 	run_length_encode() (in module tdda.rexpy.rexpy)

 	run_length_encode_coarse_classes() (tdda.rexpy.rexpy.Extractor method)

S

 	
 	sample() (tdda.rexpy.rexpy.Extractor method)

 	sample_examples() (tdda.rexpy.rexpy.Extractor method)

 	set_data_location() (tdda.referencetest.referencetest.ReferenceTest method)

 	set_default_data_location() (in module tdda.referencetest.referencepytest)

 	(tdda.referencetest.referencetest.ReferenceTest class method)

 	set_defaults() (in module tdda.referencetest.referencepytest)

 	(tdda.referencetest.referencetest.ReferenceTest class method)

 	
 	set_regeneration() (tdda.referencetest.referencetest.ReferenceTest class method)

 	signature() (in module tdda.rexpy.rexpy)

 	SignConstraint (class in tdda.constraints.base)

 	sort_fields() (tdda.constraints.base.DatasetConstraints method)

 	spec() (tdda.constraints.extension.ExtensionBase method)

 	specialize() (tdda.rexpy.rexpy.Extractor method)

T

 	
 	tag() (in module tdda.referencetest.referencetest)

 	(tdda.referencetest.referencetestcase.ReferenceTestCase method)

 	tagged() (in module tdda.referencetest.referencepytest)

 	TaggedTestLoader (class in tdda.referencetest.referencetestcase)

 	tdda.constraints (module)

 	tdda.constraints.base (module)

 	tdda.constraints.baseconstraints (module)

 	tdda.constraints.db.constraints (module)

 	tdda.constraints.examples (module)

 	tdda.constraints.extension (module)

 	tdda.referencetest (module)

 	tdda.referencetest.examples (module)

 	tdda.referencetest.referencepytest (module)

 	tdda.referencetest.referencetest (module)

 	
 	tdda.referencetest.referencetestcase (module)

 	tdda.rexpy.examples (module)

 	tdda.rexpy.rexpy (module)

 	terminate_patterns_and_sort() (in module tdda.rexpy.rexpy)

 	to_datetime() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

 	to_dict() (tdda.constraints.base.DatasetConstraints method)

 	to_dict_value() (tdda.constraints.base.FieldConstraints method)

 	(tdda.constraints.base.MultiFieldConstraints method)

 	to_json() (tdda.constraints.base.DatasetConstraints method)

 	to_vrles() (in module tdda.rexpy.rexpy)

 	TypeConstraint (class in tdda.constraints.base)

 	types_compatible() (tdda.constraints.db.constraints.DatabaseConstraintCalculator method)

 	(tdda.constraints.extension.BaseConstraintCalculator method)

V

 	
 	Verification (class in tdda.constraints.base)

 	verifiers() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	(tdda.constraints.extension.ExtensionBase method)

 	verify_allowed_values_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_db_table() (in module tdda.constraints)

 	verify_max_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_max_length_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	
 	verify_max_nulls_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_min_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_min_length_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_no_duplicates_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_rex_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_sign_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	verify_tdda_type_constraint() (tdda.constraints.baseconstraints.BaseConstraintVerifier method)

 	vrle2re() (tdda.rexpy.rexpy.Extractor method)

 	vrle2refrags() (tdda.rexpy.rexpy.Extractor method)

W

 	
 	write_detected_records() (tdda.constraints.extension.BaseConstraintDetector method)

 _images/tdda-machines-light.png

_images/gentest-IO.png
—> test_somescript_sh.py

sh somescript.sh —— —

> ref/somescript_sh

